本文提出了基于对脑肿瘤细分任务的普遍学习培训方法。在这一概念中,3D分割网络从双互惠对抗性学习方法学习。为了增强分割预测的概括并使分割网络稳健,我们通过在原始患者数据上添加一些噪声来通过增加一些噪声来遵循虚拟的对抗训练方法。通过将其作为定量主观裁判的评论者纳入了批评,分割网络从与分段结果相关的不确定性信息学习。我们在RSNA-ASNR-MICCAI BRATS 2021数据集上培训和评估网络架构。我们在线验证数据集的表现如下:骰子相似度得分为81.38%,90.77%和85.39%; Hausdorff距离(95±95±95毫米)分别为增强肿瘤,全肿瘤和肿瘤核心的5.37毫米,8.56毫米。同样,我们的方法实现了84.55%,90.46%和85.30%的骰子相似度得分,以及最终测试数据集上的13.48 mm,6.32毫米和16.98mm的Hausdorff距离(95 \%)。总体而言,我们所提出的方法对每个肿瘤次区域的分割准确性产生更好的性能。我们的代码实现在https://github.com/himashi92/vizviva_brats_2021上公开使用
translated by 谷歌翻译
由于MRI体积的强度在各机构之间是不一致的,因此必须将多模式MRI的通用特征提取到精确分段脑肿瘤。在这个概念中,我们提出了一个体积视觉变压器,遵循两种窗口策略,以提取精美特征和局部分配平滑度(LDS)在受虚拟对手训练(VAT)启发的模型训练过程中提取精美的特征和局部分配平滑度(LDS),以使模型可靠。我们在FETS Challenge 2022数据集上培训和评估了网络体系结构。我们在在线验证数据集上的性能如下:骰子相似性得分为81.71%,91.38%和85.40%; Hausdorff距离(95%)的14.81毫米,3.93毫米,11.18毫米,分别用于增强肿瘤,整个肿瘤和肿瘤核。总体而言,实验结果通过在每个肿瘤子区域的分割准确性中得出更好的性能来验证我们的方法的有效性。我们的代码实施公开可用:https://github.com/himashi92/vizviva_fets_2022
translated by 谷歌翻译
Automatic segmentation is essential for the brain tumor diagnosis, disease prognosis, and follow-up therapy of patients with gliomas. Still, accurate detection of gliomas and their sub-regions in multimodal MRI is very challenging due to the variety of scanners and imaging protocols. Over the last years, the BraTS Challenge has provided a large number of multi-institutional MRI scans as a benchmark for glioma segmentation algorithms. This paper describes our contribution to the BraTS 2022 Continuous Evaluation challenge. We propose a new ensemble of multiple deep learning frameworks namely, DeepSeg, nnU-Net, and DeepSCAN for automatic glioma boundaries detection in pre-operative MRI. It is worth noting that our ensemble models took first place in the final evaluation on the BraTS testing dataset with Dice scores of 0.9294, 0.8788, and 0.8803, and Hausdorf distance of 5.23, 13.54, and 12.05, for the whole tumor, tumor core, and enhancing tumor, respectively. Furthermore, the proposed ensemble method ranked first in the final ranking on another unseen test dataset, namely Sub-Saharan Africa dataset, achieving mean Dice scores of 0.9737, 0.9593, and 0.9022, and HD95 of 2.66, 1.72, 3.32 for the whole tumor, tumor core, and enhancing tumor, respectively. The docker image for the winning submission is publicly available at (https://hub.docker.com/r/razeineldin/camed22).
translated by 谷歌翻译
在医学图像分割任务中,脑肿瘤分割仍然是一个挑战。随着变压器在各种计算机视觉任务中的应用,变压器块显示了在全球空间中学习长距离依赖性的能力,这是与CNN互补的。在本文中,我们提出了一个新型的基于变压器的生成对抗网络,以自动分割具有多模式MRI的脑肿瘤。我们的架构由一个发电机和一个歧视器组成,这些发电机和歧视器接受了最小游戏进度的培训。发电机基于典型的“ U形”编码器架构,其底层由带有Resnet的变压器块组成。此外,发电机还接受了深度监督技术的培训。我们设计的鉴别器是一个基于CNN的网络,具有多尺度$ L_ {1} $损失,事实证明,这对于医学语义图像分割是有效的。为了验证我们方法的有效性,我们对BRATS2015数据集进行了实验,比以前的最新方法实现了可比或更好的性能。
translated by 谷歌翻译
Glioblastomas是最具侵略性的快速生长的主要脑癌,起源于大脑的胶质细胞。准确鉴定恶性脑肿瘤及其子区域仍然是医学图像分割中最具挑战性问题之一。脑肿瘤分割挑战(Brats)是自动脑胶质细胞瘤分割算法的流行基准,自于其启动。在今年的挑战中,Brats 2021提供了2,000名术前患者的最大多参数(MPMRI)数据集。在本文中,我们提出了两个深度学习框架的新聚合,即在术前MPMRI中的自动胶质母细胞瘤识别的Deepseg和NNU-Net。我们的集合方法获得了92.00,87.33和84.10和Hausdorff距离为3.81,8.91和16.02的骰子相似度分数,用于增强肿瘤,肿瘤核心和全肿瘤区域,单独进行。这些实验结果提供了证据表明它可以在临床上容易地应用,从而助攻脑癌预后,治疗计划和治疗反应监测。
translated by 谷歌翻译
Clinical diagnostic and treatment decisions rely upon the integration of patient-specific data with clinical reasoning. Cancer presents a unique context that influence treatment decisions, given its diverse forms of disease evolution. Biomedical imaging allows noninvasive assessment of disease based on visual evaluations leading to better clinical outcome prediction and therapeutic planning. Early methods of brain cancer characterization predominantly relied upon statistical modeling of neuroimaging data. Driven by the breakthroughs in computer vision, deep learning became the de facto standard in the domain of medical imaging. Integrated statistical and deep learning methods have recently emerged as a new direction in the automation of the medical practice unifying multi-disciplinary knowledge in medicine, statistics, and artificial intelligence. In this study, we critically review major statistical and deep learning models and their applications in brain imaging research with a focus on MRI-based brain tumor segmentation. The results do highlight that model-driven classical statistics and data-driven deep learning is a potent combination for developing automated systems in clinical oncology.
translated by 谷歌翻译
我们为Brats21挑战中的脑肿瘤分割任务提出了优化的U-Net架构。为了找到最佳模型架构和学习时间表,我们运行了一个广泛的消融研究来测试:深度监督损失,焦点,解码器注意,下降块和残余连接。此外,我们搜索了U-Net编码器的最佳深度,卷积通道数量和后处理策略。我们的方法赢得了验证阶段,并在测试阶段进行了第三位。我们已开放源代码以在NVIDIA深度学习示例GitHub存储库中重现我们的Brats21提交。
translated by 谷歌翻译
脑肿瘤细分对于胶质瘤患者的诊断和预后至关重要。脑肿瘤分割挑战赛继续提供一种开发自动算法来执行任务的伟大数据来源。本文介绍了我们对2021年竞争的贡献。我们开发了基于NN-UNET的方法,去年竞争的胜利。我们尝试了多种修改,包括使用较大的网络,用组标准化替换批量归一化,并在解码器中使用轴向注意力。内部5倍交叉验证以及组织者的在线评估显示了我们的方法的有效性,与基线相比,定量度量的微小改善。拟议的型号在最终排名上赢得了未经证明的测试数据的第一名。获奖提交的代码,备用重量和Docker图像在https://github.com/rixez/brats21_kaist_mri_lab上公开可用
translated by 谷歌翻译
基于深度学习的半监督学习(SSL)方法在医学图像细分中实现了强大的性能,可以通过使用大量未标记的数据来减轻医生昂贵的注释。与大多数现有的半监督学习方法不同,基于对抗性训练的方法通过学习分割图的数据分布来区分样本与不同来源,导致细分器生成更准确的预测。我们认为,此类方法的当前绩效限制是特征提取和学习偏好的问题。在本文中,我们提出了一种新的半监督的对抗方法,称为贴片置信疗法训练(PCA),用于医疗图像分割。我们提出的歧视器不是单个标量分类结果或像素级置信度图,而是创建贴片置信图,并根据斑块的规模进行分类。未标记数据的预测学习了每个贴片中的像素结构和上下文信息,以获得足够的梯度反馈,这有助于歧视器以融合到最佳状态,并改善半监督的分段性能。此外,在歧视者的输入中,我们补充了图像上的语义信息约束,使得未标记的数据更简单,以适合预期的数据分布。关于自动心脏诊断挑战(ACDC)2017数据集和脑肿瘤分割(BRATS)2019挑战数据集的广泛实验表明,我们的方法优于最先进的半监督方法,这证明了其对医疗图像分割的有效性。
translated by 谷歌翻译
使用多模式磁共振成像(MRI)对于精确的脑肿瘤细分是必需的。主要问题是,并非所有类型的MRI都始终可以在临床考试中提供。基于同一患者的先生模式之间存在强烈相关性,在这项工作中,我们提出了一种缺少一个或多种方式的脑肿瘤分割网络。所提出的网络由三个子网组成:特征增强的生成器,相关约束块和分割网络。特征增强的生成器利用可用模态来生成表示缺少模态的3D特征增强图像。相关性约束块可以利用模态之间的多源相关性,并且还限制了发电机,以合成特征增强的模态,该特征增强的模态必须具有与可用模式具有相干相关性的特征增强的模态。分段网络是基于多编码器的U-Net,以实现最终的脑肿瘤分割。所提出的方法在Brats 2018数据集上进行评估。实验结果表明,拟议方法的有效性分别在全肿瘤,肿瘤核心和增强肿瘤上实现了82.9,74.9和59.1的平均骰子得分,并且优于3.5%,17%和18.2的最佳方法%。
translated by 谷歌翻译
在多模式分割领域中,可以考虑不同方式之间的相关性以改善分段结果。考虑到不同MR模型之间的相关性,在本文中,我们提出了一种由新型三关注融合引导的多模态分段网络。我们的网络包括与N个图像源,三关注融合块,双关注融合块和解码路径的N个独立于模型编码路径。独立编码路径的模型可以从n个模式捕获模态特征。考虑到从编码器中提取的所有功能都非常有用,我们建议使用基于双重的融合来重量沿模态和空间路径的特征,可以抑制更少的信息特征,并强调每个模态的有用的功能在不同的位置。由于不同模式之间存在强烈的相关性,基于双重关注融合块,我们提出了一种相关注意模块来形成三关注融合块。在相关性注意模块中,首先使用相关描述块来学习模态之间的相关性,然后基于相关性的约束来指导网络以学习对分段更相关的潜在相关特征。最后,通过解码器投影所获得的融合特征表示以获得分段结果。我们对Brats 2018年脑肿瘤分割进行测试的实验结果证明了我们提出的方法的有效性。
translated by 谷歌翻译
来自磁共振成像(MRI)数据的自动脑肿瘤分割在评估治疗和个性化治疗分层的肿瘤反应中起重要作用.Manual分割是乏味的,主观的脑肿瘤细分算法有可能提供目标并且快速肿瘤分割。但是,这种算法的培训需要大量数据集,这些数据集并不总是可用的。数据增强技术可以减少对大型数据集的需求。然而,当前方法主要是参数,并且可能导致次优的性能。我们引入了两个非参数化的脑肿瘤分割的数据增强方法:混合结构正则化(MSR)和Shuffle像素噪声(SPN).we评估了MSR和SPN增强对大脑肿瘤分割(BRATS)2018挑战数据集的附加值与编码器 - 解码器NNU-NNU-NNU-NET架构作为分割算法。从MSR和SPN改善NNU-NET分段与参数高斯噪声增强相比的准确性。当分别将MSR与肿瘤核心和全肿瘤实验的非参数增强分别增加了80%至82%和p值= 0.0022,00028。所提出的MSR和SPN增强有可能在其他任务中提高神经网络性能。
translated by 谷歌翻译
数字医学图像的机器学习和流行的最新进展已经开辟了通过使用深卷积神经网络来解决挑战性脑肿瘤细分(BTS)任务的机会。然而,与非常广泛的RGB图像数据不同,在脑肿瘤分割中使用的医学图像数据在数据刻度方面相对稀缺,但在模态属性方面包含更丰富的信息。为此,本文提出了一种新的跨模型深度学习框架,用于从多种方式MRI数据分段脑肿瘤。核心思想是通过多模态数据挖掘丰富的模式以弥补数据量表不足。所提出的跨型号深度学习框架包括两个学习过程:跨模型特征转换(CMFT)过程和跨模型特征融合(CMFF)过程,其目的是通过跨越不同模态的知识来学习丰富的特征表示数据和融合知识分别来自不同的模态数据。在Brats基准上进行了综合实验,表明,与基线方法和最先进的方法相比,所提出的跨模型深度学习框架可以有效地提高大脑肿瘤分割性能。
translated by 谷歌翻译
脑肿瘤的语义分割是一个基本的医学图像分析任务,涉及多个MRI成像方式,可以帮助临床医生诊断患者并先后研究恶性实体的进展。近年来,完全卷积神经网络(FCNNS)方法已成为3D医学图像分割的事实标准。受欢迎的“U形”网络架构在不同的2D和3D语义分割任务和各种成像方式上实现了最先进的性能基准。然而,由于FCNNS中的卷积层的核心大小有限,它们的建模远程信息的性能是次优的,这可能导致具有可变尺寸的肿瘤分割的缺陷。另一方面,变压器模型在捕获多个域中的这种远程信息,包括自然语言处理和计算机视觉中的卓越功能。灵感来自视觉变形金刚的成功及其变体,我们提出了一种新的分割模型,被称为往返博物馆变压器(Swin Unet)。具体地,3D脑肿瘤语义分割的任务被重新重整为序列预测问题的序列,其中多模态输入数据被投射到嵌入的1D序列并用作作为编码器的分层SWIN变压器的输入。 SWIN变压器编码器通过利用移位窗口来提取五个不同分辨率的特征,以通过跳过连接在每个分辨率下连接到每个分辨率的基于FCNN的解码器。我们参与了Brats 2021分割挑战,我们所提出的模型在验证阶段的最佳方法中排名。代码:https://monai.io/research/swin-unetr.
translated by 谷歌翻译
随着深度学习方法的进步,如深度卷积神经网络,残余神经网络,对抗网络的进步。 U-Net架构最广泛利用生物医学图像分割,以解决目标区域或子区域的识别和检测的自动化。在最近的研究中,基于U-Net的方法在不同应用中显示了最先进的性能,以便在脑肿瘤,肺癌,阿尔茨海默,乳腺癌等疾病的早期诊断和治疗中发育计算机辅助诊断系统等,使用各种方式。本文通过描述U-Net框架来提出这些方法的成功,然后通过执行1)型号的U-Net变体进行综合分析,2)模特内分类,建立更好的见解相关的挑战和解决方案。此外,本文还强调了基于U-Net框架在持续的大流行病,严重急性呼吸综合征冠状病毒2(SARS-COV-2)中的贡献也称为Covid-19。最后,分析了这些U-Net变体的优点和相似性以及生物医学图像分割所涉及的挑战,以发现该领域的未来未来的研究方向。
translated by 谷歌翻译
磁共振图像(MRI)中的脑肿瘤分割(BTS)对于脑肿瘤诊断,癌症管理和研究目的至关重要。随着十年小型挑战的巨大成功以及CNN和Transformer算法的进步,已经提出了许多出色的BTS模型来解决BTS在不同技术方面的困难。但是,现有研究几乎没有考虑如何以合理的方式融合多模式图像。在本文中,我们利用了放射科医生如何从多种MRI模态诊断脑肿瘤的临床知识,并提出了一种称为CKD-TRANSBTS的临床知识驱动的脑肿瘤分割模型。我们没有直接串联所有模式,而是通过根据MRI的成像原理将输入方式分为两组来重新组织输入方式。具有拟议模态相关的跨意义块(MCCA)的双支支混合式编码器旨在提取多模式图像特征。所提出的模型以局部特征表示能力的能力来继承来自变压器和CNN的强度,以提供精确的病变边界和3D体积图像的远程特征提取。为了弥合变压器和CNN功能之间的间隙,我们提出了解码器中的反式和CNN功能校准块(TCFC)。我们将提出的模型与五个基于CNN的模型和六个基于Transformer的模型在Brats 2021挑战数据集上进行了比较。广泛的实验表明,与所有竞争对手相比,所提出的模型可实现最先进的脑肿瘤分割性能。
translated by 谷歌翻译
对于3D医学图像(例如CT和MRI)分割,在临床情况下分割每个切片的难度差异很大。先前以逐片方式进行体积医学图像分割的研究通常使用相同的2D深神经网络来细分同一情况的所有切片,从而忽略了图像切片之间的数据异质性。在本文中,我们专注于多模式3D MRI脑肿瘤分割,并根据自适应模型选择提出了一个名为MED-DANET的动态体系结构网络,以实现有效的准确性和效率折衷。对于输入3D MRI量的每个切片,我们提出的方法学习了决策网络的特定于切片的决策,以动态从预定义的模型库中选择合适的模型,以完成后续的2D分割任务。 Brats 2019和2020年数据集的广泛实验结果表明,我们提出的方法比以前的3D MRI脑肿瘤分割的最先进方法获得了可比或更好的结果,模型的复杂性要少得多。与最新的3D方法TransBT相比,提出的框架提高了模型效率高达3.5倍,而无需牺牲准确性。我们的代码将很快公开可用。
translated by 谷歌翻译
最先进的深度学习方法在分割任务中表现出令人印象深刻的性能。然而,这些方法的成功取决于大量手动标记的掩模,这是昂贵且耗时的收集。在这项工作中,提出了一种新的一致性感知的对抗网络(Cpgan),用于半监督卒中病变细分。拟议的CPGAN可以减少对完全标记的样品的依赖。具体地,设计相似性连接模块(SCM)以捕获多尺度特征的信息。所提出的SCM可以通过加权和选择性地聚合每个位置处的特征。此外,将一致的感知策略引入所提出的模型中,以增强脑卒中病变预测对未标记数据的影响。此外,构建助理网络以鼓励鉴别者学习在训练阶段期间经常被遗忘的有意义的特征表示。助理网络和鉴别者用于共同决定分割结果是否是真实的或假的。 CPGAN在中风(ATLAS)后病变的解剖学描记。实验结果表明,所提出的网络实现了卓越的分割性能。在半监督分割任务中,使用只有五分之二的标记样本的建议的CPGAN优于使用完整标记样本的一些方法。
translated by 谷歌翻译
脑肿瘤分割是医学图像分析中最具挑战性问题之一。脑肿瘤细分的目标是产生准确描绘脑肿瘤区域。近年来,深入学习方法在解决各种计算机视觉问题时表现出了有希望的性能,例如图像分类,对象检测和语义分割。基于深度学习的方法已经应用于脑肿瘤细分并取得了有希望的结果。考虑到最先进技术所制作的显着突破,我们使用本调查来提供最近开发的深层学习脑肿瘤分割技术的全面研究。在本次调查中选择并讨论了100多篇科学论文,广泛地涵盖了网络架构设计,在不平衡条件下的细分等技术方面,以及多种方式流程。我们还为未来的发展方向提供了富有洞察力的讨论。
translated by 谷歌翻译
尽管脑肿瘤分割的准确性最近有所提高,但结果仍然表现出较低的置信度和稳健性。不确定性估计是改变这种情况的一种有效方法,因为它提供了对分割结果的信心。在本文中,我们提出了一个可信赖的脑肿瘤分割网络,该网络可以产生可靠的分割结果和可靠的不确定性估计,而不会过多的计算负担和骨干网络的修改。在我们的方法中,不确定性是使用主观逻辑理论明确建模的,该理论将主干神经网络的预测视为主观观点,通过将分割的类概率参数视为差异分布。同时,可信赖的分割框架学习了从功能中收集可靠证据的功能,从而导致最终分割结果。总体而言,我们统一的可信赖分割框架使该模型具有可靠性和鲁棒性,对分布式样本。为了评估我们的模型在鲁棒性和可靠性方面的有效性,在Brats 2019数据集中进行了定性和定量实验。
translated by 谷歌翻译