脑电图(EEG)的准确自动分析将在很大程度上有助于临床医生有效监测和诊断患有各种脑部疾病的患者。与使用标记的疾病脑电图数据进行监督的学习相比,可以训练模型以分析特定疾病但无法监测以前看不见的状态,仅基于正常脑电图的异常检测才能检测到新EEG中的任何潜在异常。与现有的异常检测策略不同,这些检测策略在模型开发过程中不考虑任何不可用的异常数据的财产,这里提出了一种面向任务的自我监督学习方法,它可以利用可用的正常脑电图和有关异常EEG的专业知识来培训更有效的EEG随后开发异常检测器的特征提取器。此外,具有较大核的特定两个分支卷积神经网络被设计为特征提取器,因此它可以更容易地提取较大规模和小规模的特征,这些特征通常出现在不可用的异常脑电图中。如三个EEG数据集所示,有效设计和训练的功能提取器已证明能够根据正常数据和未来的新EEG提取更好的特征表示,以根据正常数据和未来的异常检测来开发异常检测器。该代码可在https://github.com/irining/eeg-ad上找到。
translated by 谷歌翻译
无监督的异常检测旨在通过在正常数据上训练来建立模型以有效地检测看不见的异常。尽管以前的基于重建的方法取得了富有成效的进展,但由于两个危急挑战,他们的泛化能力受到限制。首先,训练数据集仅包含正常模式,这限制了模型泛化能力。其次,现有模型学到的特征表示通常缺乏代表性,妨碍了保持正常模式的多样性的能力。在本文中,我们提出了一种称为自适应存储器网络的新方法,具有自我监督的学习(AMSL)来解决这些挑战,并提高无监督异常检测中的泛化能力。基于卷积的AutoEncoder结构,AMSL包含一个自我监督的学习模块,以学习一般正常模式和自适应内存融合模块来学习丰富的特征表示。四个公共多变量时间序列数据集的实验表明,与其他最先进的方法相比,AMSL显着提高了性能。具体而言,在具有9亿个样本的最大帽睡眠阶段检测数据集上,AMSL以精度和F1分数\ TextBF {4} \%+优于第二个最佳基线。除了增强的泛化能力之外,AMSL还针对输入噪声更加强大。
translated by 谷歌翻译
大量标记的医学图像对于准确检测异常是必不可少的,但是手动注释是劳动密集型且耗时的。自我监督学习(SSL)是一种培训方法,可以在没有手动注释的情况下学习特定于数据的功能。在医学图像异常检测中已采用了几种基于SSL的模型。这些SSL方法有效地学习了几个特定特定图像的表示形式,例如自然和工业产品图像。但是,由于需要医学专业知识,典型的基于SSL的模型在医疗图像异常检测中效率低下。我们提出了一个基于SSL的模型,该模型可实现基于解剖结构的无监督异常检测(UAD)。该模型采用解剖学意识粘贴(Anatpaste)增强工具。 Anatpaste采用基于阈值的肺部分割借口任务来在正常的胸部X光片上创建异常,用于模型预处理。这些异常类似于实际异常,并帮助模型识别它们。我们在三个OpenSource胸部X光片数据集上评估了我们的模型。我们的模型在曲线(AUC)下展示了92.1%,78.7%和81.9%的模型,在现有UAD模型中最高。这是第一个使用解剖信息作为借口任务的SSL模型。 Anatpaste可以应用于各种深度学习模型和下游任务。它可以通过修复适当的细分来用于其他方式。我们的代码可在以下网址公开获取:https://github.com/jun-sato/anatpaste。
translated by 谷歌翻译
无监督的异常检测(UAD)只需要正常(健康)训练图像是实现医学图像分析(MIA)应用的重要工具,例如疾病筛查,因为通常难以收集和注释异常(或疾病)MIA中的图像。然而,严重依赖于正常图像可能导致模型训练过度填写正常类。自我监督的预训练是对这个问题的有效解决方案。遗憾的是,从计算机视觉调整的当前自我监督方法是MIA应用的次优,因为它们不探索设计借口任务或培训过程的MIA域知识。在本文中,我们提出了一种为MIA应用设计的UAD的新的自我监督的预训练方法,通过对比学习(MSACL)命名为多级强大增强。 MSACL基于新颖的优化,以对比正常和多种合成的异常图像,每个类在欧几里德距离和余弦相似度方面强制形成紧密和密集的聚类,其中通过模拟变化数量的病变形成异常图像在正常图像中的不同尺寸和外观。在实验中,我们表明,我们的MSACL预培训使用结肠镜检查,眼底筛选和Covid-19胸部X射线数据集来提高SOTA UAD方法的准确性。
translated by 谷歌翻译
无监督的时间序列异常检测对各种域中目标系统的潜在故障有助于。当前的最新时间序列异常检测器主要集中于设计高级神经网络结构和新的重建/预测学习目标,以尽可能准确地学习数据正常(正常模式和行为)。但是,这些单级学习方法可以被训练数据中未知异常(即异常污染)所欺骗。此外,他们的正常学习也缺乏对感兴趣异常的知识。因此,他们经常学习一个有偏见的,不准确的正态边界。本文提出了一种新型的单级学习方法,称为校准的一级分类,以解决此问题。我们的单级分类器以两种方式进行校准:(1)通过适应性地惩罚不确定的预测,这有助于消除异常污染的影响,同时强调单级模型对一级模型有信心的预测,并通过区分正常情况来确定(2)来自本机异常示例的样本,这些样本是根据原始数据基于原始数据模拟真实时间序列异常行为的。这两个校准导致耐污染的,异常的单级学习,从而产生了显着改善的正态性建模。对六个现实世界数据集进行的广泛实验表明,我们的模型大大优于12个最先进的竞争对手,并获得了6%-31%的F1分数提高。源代码可在\ url {https://github.com/xuhongzuo/couta}中获得。
translated by 谷歌翻译
本文提出了一种基于机器学习的方法,旨在提醒患者可能呼吸道疾病。各种类型的病理可能会影响呼吸系统,可能导致严重疾病,在某些情况下死亡。通常,有效的预防实践被视为改善患者健康状况的主要参与者。提出的方法致力于实现一种易于使用的工具,以自动诊断呼吸道疾病。具体而言,该方法利用变异自动编码器体系结构允许使用有限的复杂性和相对较小的数据集的培训管道。重要的是,它的精度为57%,这与现有的强烈监督方法一致。
translated by 谷歌翻译
脑电图(EEG)信号是用于癫痫发作分析的有效工具,其中最重要的挑战之一是对癫痫发作或发起的癫痫发作事件和大脑​​区域的准确检测。但是,所有基于机器学习的癫痫发作分析算法都需要访问标记的癫痫发作数据,同时获取标记的数据是非常劳动密集型,昂贵的,并且鉴于EEG信号的视觉定性解释的主观性质。在本文中,我们建议以自我监督的方式检测癫痫发道和剪辑,在这种方式中不需要访问癫痫发作数据。所提出的方法考虑了通过使用正和负子图的局部结构和上下文信息,这些信息嵌入了EEG图中。我们通过最大程度地减少对比度和生成性损失来训练我们的方法。当地脑电图子图的使用使该算法在访问所有脑电图通道时成为适当的选择,这是由于诸如颅骨骨折之类的并发症。我们对最大的癫痫发作数据集进行了一系列广泛的实验,并证明我们提出的框架在基于EEG的癫痫发作研究中优于最新方法。提出的方法是唯一需要在其训练阶段访问癫痫发作数据的研究,但可以建立一个新的领域最新技术,并且胜过所有相关的监督方法。
translated by 谷歌翻译
深度异常检测已被证明是几个领域的有效和强大的方法。自我监督学习的引入极大地帮助了许多方法,包括异常检测,其中使用简单的几何变换识别任务。然而,由于它们缺乏更精细的特征,因此这些方法在细粒度问题上表现不佳,并且通常高度依赖于异常类型。在本文中,我们探讨了使用借口任务的自我监督异常检测的每个步骤。首先,我们介绍了专注于不同视觉线索的新型鉴别和生成任务。一部分拼图拼图任务侧重于结构提示,而在每个件上使用色调旋转识别进行比色法,并且执行部分重新染色任务。为了使重新着色任务更关注对象而不是在后台上关注,我们建议包括图像边界的上下文颜色信息。然后,我们介绍了一个新的分配检测功能,并与其他分配检测方法相比,突出了其更好的稳定性。随之而来,我们还试验不同的分数融合功能。最后,我们在具有经典对象识别的对象异常组成的综合异常检测协议上评估我们的方法,用细粒度分类和面部反欺骗数据集的局部分类和局部异常的样式异常。我们的模型可以更准确地学习使用这些自我监督任务的高度辨别功能。它优于最先进的最先进的相对误差改善对象异常,40%的面对反欺骗问题。
translated by 谷歌翻译
异常检测旨在识别数据点,这些数据点显示了未标记数据集中大多数数据的系统偏差。一个普遍的假设是,可以使用干净的培训数据(没有异常),这在实践中通常会违反。我们提出了一种在存在与广泛模型兼容的未标记异常的情况下训练异常检测器的策略。这个想法是在更新模型参数时将二进制标签共同推断为每个基准(正常与异常)。受到异常暴露的启发(Hendrycks等人,2018年),该暴露考虑合成创建,标记为异常,我们因此使用了两个共享参数的损失的组合:一个用于正常参数,一个用于异常数据。然后,我们对参数和最可能(潜在)标签进行块坐标更新。我们在三个图像数据集,30个表格数据集和视频异常检测基准上使用几个主链模型进行了实验,对基线显示了一致且显着的改进。
translated by 谷歌翻译
无监督的异常检测和定位对于采集和标记足够的异常数据时对实际应用至关重要。基于现有的基于表示的方法提取具有深度卷积神经网络的正常图像特征,并通过非参数分布估计方法表征相应的分布。通过测量测试图像的特征与估计分布之间的距离来计算异常分数。然而,当前方法无法将图像特征与易解基本分布有效地映射到局部和全局特征之间的关系,这些功能与识别异常很重要。为此,我们提出了使用2D标准化流动实现的FastFlow,并将其用作概率分布估计器。我们的FastFlow可用作具有任意深度特征提取器的插入式模块,如Reset和Vision变压器,用于无监督的异常检测和定位。在训练阶段,FastFlow学习将输入视觉特征转换为贸易分布并获得识别推理阶段中的异常的可能性。 MVTEC AD数据集的广泛实验结果显示,在具有各种骨干网络的准确性和推理效率方面,FastFlow在先前的最先进的方法上超越了先前的方法。我们的方法通过高推理效率达到异常检测中的99.4%AUC。
translated by 谷歌翻译
异常识别中的一个常见研究区域是基于纹理背景的工业图像异常检测。纹理图像的干扰和纹理异常的小型性是许多现有模型无法检测异常的主要原因。我们提出了一种异常检测策略,该策略根据上述问题结合了字典学习和归一流的流程。我们的方法增强了已经使用的两阶段异常检测方法。为了改善基线方法,这项研究增加了表示学习中的正常流程,并结合了深度学习和词典学习。在实验验证后,所有MVTEC AD纹理类型数据的改进算法超过了95 $ \%$检测精度。它显示出强大的鲁棒性。地毯数据的基线方法的检测准确性为67.9%。该文章已升级,将检测准确性提高到99.7%。
translated by 谷歌翻译
机器学习在医学图像分析中发挥着越来越重要的作用,产卵在神经影像症的临床应用中的新进展。之前有一些关于机器学习和癫痫的综述,它们主要专注于电生理信号,如脑电图(EEG)和立体脑电图(SEENG),同时忽略癫痫研究中神经影像的潜力。 NeuroImaging在确认癫痫区域的范围内具有重要的优点,这对于手术后的前诊所评估和评估至关重要。然而,脑电图难以定位大脑中的准确癫痫病变区。在这篇综述中,我们强调了癫痫诊断和预后在癫痫诊断和预后的背景下神经影像学和机器学习的相互作用。我们首先概述癫痫诊所,MRI,DWI,FMRI和PET中使用的癫痫和典型的神经影像姿态。然后,我们在将机器学习方法应用于神经影像数据的方法:i)将手动特征工程和分类器的传统机器学习方法阐述了两种方法,即卷积神经网络和自动化器等深度学习方法。随后,详细地研究了对癫痫,定位和横向化任务等分割,本地化和横向化任务的应用,以及与诊断和预后直接相关的任务。最后,我们讨论了目前的成就,挑战和潜在的未来方向,希望为癫痫的计算机辅助诊断和预后铺平道路。
translated by 谷歌翻译
由于数据保护法和机构内的官方程序,在实践中很难在机构之间共享医疗数据。因此,大多数现有的算法经过相对较小的脑电图(EEG)数据集的培训,这可能会损害预测准确性。在这项工作中,我们通过将公开可用的数据集分配到代表各个机构中数据的不相交集中来共享数据时模拟了一个情况。我们建议在每个机构中培训一个(本地)检测器,并将其个人预测汇总为最终预测。比较了四个集合计划,即多数投票,平均值,加权平均值和Dawid-Skene方法。该方法仅使用EEG通道的一个子集在独立的数据集上进行了验证。当每个机构提供足够数量的数据时,合奏的精度与对所有数据进行训练的单个检测器相当。加权平均聚合方案表现出最佳性能,当局部检测器接近对所有可用数据训练的单个检测器的性能时,它只能用DAWID-SKENE方法略有优于。
translated by 谷歌翻译
Seizure type identification is essential for the treatment and management of epileptic patients. However, it is a difficult process known to be time consuming and labor intensive. Automated diagnosis systems, with the advancement of machine learning algorithms, have the potential to accelerate the classification process, alert patients, and support physicians in making quick and accurate decisions. In this paper, we present a novel multi-path seizure-type classification deep learning network (MP-SeizNet), consisting of a convolutional neural network (CNN) and a bidirectional long short-term memory neural network (Bi-LSTM) with an attention mechanism. The objective of this study was to classify specific types of seizures, including complex partial, simple partial, absence, tonic, and tonic-clonic seizures, using only electroencephalogram (EEG) data. The EEG data is fed to our proposed model in two different representations. The CNN was fed with wavelet-based features extracted from the EEG signals, while the Bi-LSTM was fed with raw EEG signals to let our MP-SeizNet jointly learns from different representations of seizure data for more accurate information learning. The proposed MP-SeizNet was evaluated using the largest available EEG epilepsy database, the Temple University Hospital EEG Seizure Corpus, TUSZ v1.5.2. We evaluated our proposed model across different patient data using three-fold cross-validation and across seizure data using five-fold cross-validation, achieving F1 scores of 87.6% and 98.1%, respectively.
translated by 谷歌翻译
Weakly supervised video anomaly detection (WSVAD) is a challenging task since only video-level labels are available for training. In previous studies, the discriminative power of the learned features is not strong enough, and the data imbalance resulting from the mini-batch training strategy is ignored. To address these two issues, we propose a novel WSVAD method based on cross-batch clustering guidance. To enhance the discriminative power of features, we propose a batch clustering based loss to encourage a clustering branch to generate distinct normal and abnormal clusters based on a batch of data. Meanwhile, we design a cross-batch learning strategy by introducing clustering results from previous mini-batches to reduce the impact of data imbalance. In addition, we propose to generate more accurate segment-level anomaly scores based on batch clustering guidance further improving the performance of WSVAD. Extensive experiments on two public datasets demonstrate the effectiveness of our approach.
translated by 谷歌翻译
与经典信号处理和基于机器学习的框架相比,基于深度学习的方法基于深度学习的方法显着提高了分类准确性。但大多数是由于脑电图数据中存在的受试者间可变性而无法概括对象无关的任务的主题依赖性研究。在这项工作中,提出了一种新的深度学习框架,其能够进行独立的情感识别,由两部分组成。首先,提出了具有通道关注自动泊车的无监督的长短期存储器(LSTM),用于获取主体不变的潜航向量子空间,即每个人的EEG数据中存在的内部变量。其次,提出了一种具有注意力框架的卷积神经网络(CNN),用于对从提出的LSTM获得的编码的较低的潜在空间表示对具有通道 - 注意自身形拓的编码的低潜空间表示的任务。通过注意机制,所提出的方法可以突出EEG信号的显着时间段,这有助于所考虑的情绪,由结果验证。已经使用公共数据集进行了验证的方法,用于EEG信号,例如Deap DataSet,SEED数据集和CHB-MIT数据集。所提出的端到端深度学习框架消除了不同手工工程特征的要求,并提供了一个单一的全面任务不可知性EEG分析工具,能够对主题独立数据进行各种EEG分析。
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
Anomaly detection is defined as discovering patterns that do not conform to the expected behavior. Previously, anomaly detection was mostly conducted using traditional shallow learning techniques, but with little improvement. As the emergence of graph neural networks (GNN), graph anomaly detection has been greatly developed. However, recent studies have shown that GNN-based methods encounter challenge, in that no graph anomaly detection algorithm can perform generalization on most datasets. To bridge the tap, we propose a multi-view fusion approach for graph anomaly detection (Mul-GAD). The view-level fusion captures the extent of significance between different views, while the feature-level fusion makes full use of complementary information. We theoretically and experimentally elaborate the effectiveness of the fusion strategies. For a more comprehensive conclusion, we further investigate the effect of the objective function and the number of fused views on detection performance. Exploiting these findings, our Mul-GAD is proposed equipped with fusion strategies and the well-performed objective function. Compared with other state-of-the-art detection methods, we achieve a better detection performance and generalization in most scenarios via a series of experiments conducted on Pubmed, Amazon Computer, Amazon Photo, Weibo and Books. Our code is available at https://github.com/liuyishoua/Mul-Graph-Fusion.
translated by 谷歌翻译
我们提出了一种轻巧,准确的方法,用于检测视频中的异常情况。现有方法使用多个实体学习(MIL)来确定视频每个段的正常/异常状态。最近的成功研​​究认为,学习细分市场之间的时间关系很重要,以达到高精度,而不是只关注单个细分市场。因此,我们分析了近年来成功的现有方法,并发现同时学习所有细分市场确实很重要,但其中的时间顺序与实现高准确性无关。基于这一发现,我们不使用MIL框架,而是提出具有自发机制的轻质模型,以自动提取对于确定所有输入段正常/异常非常重要的特征。结果,我们的神经网络模型具有现有方法的参数数量的1.3%。我们在三个基准数据集(UCF-Crime,Shanghaitech和XD-Violence)上评估了方法的帧级检测准确性,并证明我们的方法可以比最新方法实现可比或更好的准确性。
translated by 谷歌翻译
开放式视频异常检测(OpenVAD)旨在从视频数据中识别出异常事件,在测试中都存在已知的异常和新颖的事件。无监督的模型仅从普通视频中学到的模型适用于任何测试异常,但遭受高误报率的损失。相比之下,弱监督的方法可有效检测已知的异常情况,但在开放世界中可能会失败。我们通过将证据深度学习(EDL)和将流量(NFS)归一化为多个实例学习(MIL)框架来开发出一种新颖的OpenVAD问题的弱监督方法。具体而言,我们建议使用图形神经网络和三重态损失来学习训练EDL分类器的区分特征,在该特征中,EDL能够通过量化不确定性来识别未知异常。此外,我们制定了一种不确定性感知的选择策略,以获取清洁异常实例和NFS模块以生成伪异常。我们的方法通过继承无监督的NF和弱监督的MIL框架的优势来优于现有方法。多个现实世界视频数据集的实验结果显示了我们方法的有效性。
translated by 谷歌翻译