Anomaly detection is defined as discovering patterns that do not conform to the expected behavior. Previously, anomaly detection was mostly conducted using traditional shallow learning techniques, but with little improvement. As the emergence of graph neural networks (GNN), graph anomaly detection has been greatly developed. However, recent studies have shown that GNN-based methods encounter challenge, in that no graph anomaly detection algorithm can perform generalization on most datasets. To bridge the tap, we propose a multi-view fusion approach for graph anomaly detection (Mul-GAD). The view-level fusion captures the extent of significance between different views, while the feature-level fusion makes full use of complementary information. We theoretically and experimentally elaborate the effectiveness of the fusion strategies. For a more comprehensive conclusion, we further investigate the effect of the objective function and the number of fused views on detection performance. Exploiting these findings, our Mul-GAD is proposed equipped with fusion strategies and the well-performed objective function. Compared with other state-of-the-art detection methods, we achieve a better detection performance and generalization in most scenarios via a series of experiments conducted on Pubmed, Amazon Computer, Amazon Photo, Weibo and Books. Our code is available at https://github.com/liuyishoua/Mul-Graph-Fusion.
translated by 谷歌翻译
Recently, graph anomaly detection has attracted increasing attention in data mining and machine learning communities. Apart from existing attribute anomalies, graph anomaly detection also captures suspicious topological-abnormal nodes that differ from the major counterparts. Although massive graph-based detection approaches have been proposed, most of them focus on node-level comparison while pay insufficient attention on the surrounding topology structures. Nodes with more dissimilar neighborhood substructures have more suspicious to be abnormal. To enhance the local substructure detection ability, we propose a novel Graph Anomaly Detection framework via Multi-scale Substructure Learning (GADMSL for abbreviation). Unlike previous algorithms, we manage to capture anomalous substructures where the inner similarities are relatively low in dense-connected regions. Specifically, we adopt a region proposal module to find high-density substructures in the network as suspicious regions. Their inner-node embedding similarities indicate the anomaly degree of the detected substructures. Generally, a lower degree of embedding similarities means a higher probability that the substructure contains topology anomalies. To distill better embeddings of node attributes, we further introduce a graph contrastive learning scheme, which observes attribute anomalies in the meantime. In this way, GADMSL can detect both topology and attribute anomalies. Ultimately, extensive experiments on benchmark datasets show that GADMSL greatly improves detection performance (up to 7.30% AUC and 17.46% AUPRC gains) compared to state-of-the-art attributed networks anomaly detection algorithms.
translated by 谷歌翻译
Anomaly analytics is a popular and vital task in various research contexts, which has been studied for several decades. At the same time, deep learning has shown its capacity in solving many graph-based tasks like, node classification, link prediction, and graph classification. Recently, many studies are extending graph learning models for solving anomaly analytics problems, resulting in beneficial advances in graph-based anomaly analytics techniques. In this survey, we provide a comprehensive overview of graph learning methods for anomaly analytics tasks. We classify them into four categories based on their model architectures, namely graph convolutional network (GCN), graph attention network (GAT), graph autoencoder (GAE), and other graph learning models. The differences between these methods are also compared in a systematic manner. Furthermore, we outline several graph-based anomaly analytics applications across various domains in the real world. Finally, we discuss five potential future research directions in this rapidly growing field.
translated by 谷歌翻译
由于其在许多有影响力的领域中的广泛应用,归因网络上的图形异常检测已成为普遍的研究主题。在现实情况下,属性网络中的节点和边缘通常显示出不同的异质性,即不同类型的节点的属性显示出大量的多样性,不同类型的关系表示多种含义。在这些网络中,异常在异质性的各个角度上的表现通常与大多数不同。但是,现有的图异常检测方法不能利用归因网络中的异质性,这与异常检测高度相关。鉴于这个问题,我们提出了前方的提议:基于编码器解码器框架的异质性无监督图异常检测方法。具体而言,对于编码器,我们设计了三个关注级别,即属性级别,节点类型级别和边缘级别的关注,以捕获网络结构的异质性,节点属性和单个节点的信息。在解码器中,我们利用结构,属性和节点类型重建项来获得每个节点的异常得分。广泛的实验表明,与无监督环境中的艺术品相比,在几个现实世界中的异质信息网络上,前方的优势。进一步的实验验证了我们三重注意力,模型骨干和解码器的有效性和鲁棒性。
translated by 谷歌翻译
基于图的异常检测已被广泛用于检测现实世界应用中的恶意活动。迄今为止,现有的解决此问题的尝试集中在二进制分类制度中的结构特征工程或学习上。在这项工作中,我们建议利用图形对比编码,并提出监督的GCCAD模型,以将异常节点与正常节点的距离与全球环境(例如所有节点的平均值)相比。为了使用稀缺标签处理场景,我们通过设计用于生成合成节点标签的图形损坏策略,进一步使GCCAD成为一个自制的框架。为了实现对比目标,我们设计了一个图形神经网络编码器,该编码器可以在消息传递过程中推断并进一步删除可疑链接,并了解输入图的全局上下文。我们在四个公共数据集上进行了广泛的实验,表明1)GCCAD显着且始终如一地超过各种高级基线,2)其自我监督版本没有微调可以通过其完全监督的版本来实现可比性的性能。
translated by 谷歌翻译
近年来,由于其在金融,网络安全和医学等广泛的领域中的应用,近年来,归因网络中的异常检测受到了极大的关注。传统方法不能在属性网络的设置上采用以解决异常检测问题。这种方法的主要局限性是它们固有地忽略了数据特征之间的关系信息。随着基于深度学习和图神经网络技术的快速爆炸,由于深度技术在提取复杂关系方面的潜力,因此在归因网络上发现稀有对象已大大发展。在本文中,我们提出了有关异常检测的新架构。设计这种体系结构的主要目标是利用多任务学习,以增强检测性能。基于多任务的基于学习的异常检测仍处于起步阶段,现有文献中只有少数研究迎合了同样的研究。我们合并了社区检测和多视图表示学习技术,以从属性网络中提取明显和互补的信息,并随后融合捕获的信息以获得更好的检测结果。该体系结构中采用的两个主要组成部分(即社区特定的学习和多视图表示学习)之间的相互合作展示了一种有希望的解决方案,以达到更有效的结果。
translated by 谷歌翻译
与其他图表相比,图形级异常检测(GAD)描述了检测其结构和/或其节点特征的图表的问题。GAD中的一个挑战是制定图表表示,该图表示能够检测本地和全局 - 异常图,即它们的细粒度(节点级)或整体(图级)属性异常的图形,分别。为了解决这一挑战,我们介绍了一种新的深度异常检测方法,用于通过图表和节点表示的联合随机蒸馏学习丰富的全球和局部正常模式信息。通过训练一个GNN来实现随机初始化网络权重的另一GNN来实现随机蒸馏。来自各种域的16个真实图形数据集的广泛实验表明,我们的模型显着优于七种最先进的模型。代码和数据集可以在https://git.io/llocalkd中获得。
translated by 谷歌翻译
近年来,由于其在研究和实践中的重要性,对归属网络的异常检测问题有望的兴趣。虽然已经提出了各种方法来解决这个问题,但存在两种主要限制:(1)由于缺乏监控信号,未经监督的方法通常会效率低得多,(2)现有的异常检测方法仅使用本地语境信息来检测异常信息以检测异常信息节点,例如,单跳或两跳信息,但忽略全局上下文信息。由于异常节点与结构和属性中的正常节点不同,因此如果我们删除连接异常和正常节点的边缘,异常节点和其邻居之间的距离应该大于正常节点和其邻居之间的距离直观。因此,基于全局和本地上下文信息的跳数可以作为异常的指标。通过这种直觉激励,我们提出了一种基于跳数的模型(HCM)来通过建模本地和全局上下文信息来检测异常。为了更好地利用异常识别的跳跃计数,我们建议使用跳数预测作为自我监督任务。我们根据HOP计数通过HCM模型设计了两个异常的分数来识别异常。此外,我们雇用贝叶斯学习培训HCM模型,以捕获学习参数的不确定性,避免过度装备。关于现实世界归属网络的广泛实验表明,我们所提出的模型在异常检测中是有效的。
translated by 谷歌翻译
图形离群值检测是一项具有许多应用程序的新兴但至关重要的机器学习任务。尽管近年来算法扩散,但缺乏标准和统一的绩效评估设置限制了它们在现实世界应用中的进步和使用。为了利用差距,我们(据我们所知)(据我们所知)第一个全面的无监督节点离群值检测基准为unod,并带有以下亮点:(1)评估骨架从经典矩阵分解到最新图形神经的骨架的14个方法网络; (2)在现实世界数据集上使用不同类型的注射异常值和自然异常值对方法性能进行基准测试; (3)通过在不同尺度的合成图上使用运行时和GPU存储器使用算法的效率和可扩展性。基于广泛的实验结果的分析,我们讨论了当前渠道方法的利弊,并指出了多个关键和有希望的未来研究方向。
translated by 谷歌翻译
无监督的异常检测旨在通过在正常数据上训练来建立模型以有效地检测看不见的异常。尽管以前的基于重建的方法取得了富有成效的进展,但由于两个危急挑战,他们的泛化能力受到限制。首先,训练数据集仅包含正常模式,这限制了模型泛化能力。其次,现有模型学到的特征表示通常缺乏代表性,妨碍了保持正常模式的多样性的能力。在本文中,我们提出了一种称为自适应存储器网络的新方法,具有自我监督的学习(AMSL)来解决这些挑战,并提高无监督异常检测中的泛化能力。基于卷积的AutoEncoder结构,AMSL包含一个自我监督的学习模块,以学习一般正常模式和自适应内存融合模块来学习丰富的特征表示。四个公共多变量时间序列数据集的实验表明,与其他最先进的方法相比,AMSL显着提高了性能。具体而言,在具有9亿个样本的最大帽睡眠阶段检测数据集上,AMSL以精度和F1分数\ TextBF {4} \%+优于第二个最佳基线。除了增强的泛化能力之外,AMSL还针对输入噪声更加强大。
translated by 谷歌翻译
考虑到过去几十年中开发的一长串异常检测算法,它们如何在(i)(i)不同级别的监督,(ii)不同类型的异常以及(iii)嘈杂和损坏的数据方面执行?在这项工作中,我们通过(据我们所知)在55个名为Adbench的55个基准数据集中使用30个算法来回答这些关键问题。我们的广泛实验(总共93,654)确定了对监督和异常类型的作用的有意义的见解,并解锁了研究人员在算法选择和设计中的未来方向。借助Adbench,研究人员可以轻松地对数据集(包括我们从自然语言和计算机视觉域的贡献)对现有基线的新提出的方法进行全面和公平的评估。为了促进可访问性和可重复性,我们完全开源的Adbench和相应的结果。
translated by 谷歌翻译
日志分析是工程师用来解决大规模软件系统故障的主要技术之一。在过去的几十年中,已经提出了许多日志分析方法来检测日志反映的系统异常。他们通常将日志事件计数或顺序日志事件作为输入,并利用机器学习算法,包括深度学习模型来检测系统异常。这些异常通常被确定为对数序列中对数事件的定量关系模式或顺序模式的违反。但是,现有方法无法利用日志事件之间的空间结构关系,从而导致潜在的错误警报和不稳定的性能。在这项研究中,我们提出了一种新型的基于图的对数异常检测方法loggd,以通过将日志序列转换为图来有效解决问题。我们利用了图形变压器神经网络的强大功能,该网络结合了图结构和基于日志异常检测的节点语义。我们在四个广泛使用的公共日志数据集上评估了建议的方法。实验结果表明,Loggd可以胜过最先进的基于定量和基于序列的方法,并在不同的窗口大小设置下实现稳定的性能。结果证实LOGGD在基于对数的异常检测中有效。
translated by 谷歌翻译
Due to the issue that existing wireless sensor network (WSN)-based anomaly detection methods only consider and analyze temporal features, in this paper, a self-supervised learning-based anomaly node detection method based on an autoencoder is designed. This method integrates temporal WSN data flow feature extraction, spatial position feature extraction and intermodal WSN correlation feature extraction into the design of the autoencoder to make full use of the spatial and temporal information of the WSN for anomaly detection. First, a fully connected network is used to extract the temporal features of nodes by considering a single mode from a local spatial perspective. Second, a graph neural network (GNN) is used to introduce the WSN topology from a global spatial perspective for anomaly detection and extract the spatial and temporal features of the data flows of nodes and their neighbors by considering a single mode. Then, the adaptive fusion method involving weighted summation is used to extract the relevant features between different models. In addition, this paper introduces a gated recurrent unit (GRU) to solve the long-term dependence problem of the time dimension. Eventually, the reconstructed output of the decoder and the hidden layer representation of the autoencoder are fed into a fully connected network to calculate the anomaly probability of the current system. Since the spatial feature extraction operation is advanced, the designed method can be applied to the task of large-scale network anomaly detection by adding a clustering operation. Experiments show that the designed method outperforms the baselines, and the F1 score reaches 90.6%, which is 5.2% higher than those of the existing anomaly detection methods based on unsupervised reconstruction and prediction. Code and model are available at https://github.com/GuetYe/anomaly_detection/GLSL
translated by 谷歌翻译
作为在Internet交换路由到达性信息的默认协议,边界网关协议(BGP)的流量异常行为与互联网异常事件密切相关。 BGP异常检测模型通过其实时监控和警报功能确保互联网上的稳定路由服务。以前的研究要么专注于特征选择问题或数据中的内存特征,同时忽略特征之间的关系和特征中的精确时间相关(无论是长期还是短期依赖性)。在本文中,我们提出了一种用于捕获来自BGP更新流量的异常行为的多视图模型,其中使用黄土(STL)方法的季节性和趋势分解来减少原始时间序列数据中的噪声和图表网络中的噪声(GAT)用于分别发现功能中的特征关系和时间相关性。我们的结果优于异常检测任务的最先进的方法,平均F1分别在平衡和不平衡数据集上得分高达96.3%和93.2%。同时,我们的模型可以扩展以对多个异常进行分类并检测未知事件。
translated by 谷歌翻译
深度异常检测已被证明是几个领域的有效和强大的方法。自我监督学习的引入极大地帮助了许多方法,包括异常检测,其中使用简单的几何变换识别任务。然而,由于它们缺乏更精细的特征,因此这些方法在细粒度问题上表现不佳,并且通常高度依赖于异常类型。在本文中,我们探讨了使用借口任务的自我监督异常检测的每个步骤。首先,我们介绍了专注于不同视觉线索的新型鉴别和生成任务。一部分拼图拼图任务侧重于结构提示,而在每个件上使用色调旋转识别进行比色法,并且执行部分重新染色任务。为了使重新着色任务更关注对象而不是在后台上关注,我们建议包括图像边界的上下文颜色信息。然后,我们介绍了一个新的分配检测功能,并与其他分配检测方法相比,突出了其更好的稳定性。随之而来,我们还试验不同的分数融合功能。最后,我们在具有经典对象识别的对象异常组成的综合异常检测协议上评估我们的方法,用细粒度分类和面部反欺骗数据集的局部分类和局部异常的样式异常。我们的模型可以更准确地学习使用这些自我监督任务的高度辨别功能。它优于最先进的最先进的相对误差改善对象异常,40%的面对反欺骗问题。
translated by 谷歌翻译
A large number of studies on Graph Outlier Detection (GOD) have emerged in recent years due to its wide applications, in which Unsupervised Node Outlier Detection (UNOD) on attributed networks is an important area. UNOD focuses on detecting two kinds of typical outliers in graphs: the structural outlier and the contextual outlier. Most existing works conduct experiments based on datasets with injected outliers. However, we find that the most widely-used outlier injection approach has a serious data leakage issue. By only utilizing such data leakage, a simple approach can achieve state-of-the-art performance in detecting outliers. In addition, we observe that most existing algorithms have a performance drop with varied injection settings. The other major issue is on balanced detection performance between the two types of outliers, which has not been considered by existing studies. In this paper, we analyze the cause of the data leakage issue in depth since the injection approach is a building block to advance UNOD. Moreover, we devise a novel variance-based model to detect structural outliers, which outperforms existing algorithms significantly at different injection settings. On top of this, we propose a new framework, Variance-based Graph Outlier Detection (VGOD), which combines our variance-based model and attribute reconstruction model to detect outliers in a balanced way. Finally, we conduct extensive experiments to demonstrate the effectiveness and efficiency of VGOD. The results on 5 real-world datasets validate that VGOD achieves not only the best performance in detecting outliers but also a balanced detection performance between structural and contextual outliers. Our code is available at https://github.com/goldenNormal/vgod-github.
translated by 谷歌翻译
归因网络上的异常检测最近在许多研究领域(例如控制论异常检测和财务欺诈检测)受到了越来越多的关注。随着深度学习在图表表示上的广泛应用,现有的方法选择将欧几里得图编码器作为骨架进行应用,这可能会失去重要的层次结构信息,尤其是在复杂的网络中。为了解决这个问题,我们建议使用双曲线自我监督对比度学习有效的异常检测框架。具体而言,我们首先通过执行子图抽样进行数据增强。然后,我们通过指数映射和对数映射利用双曲线空间中的分层信息,并通过通过区分过程从负对中减去正对的分数来获得异常得分。最后,在四个现实世界数据集上进行的广泛实验表明,我们的方法在代表性基线方法上的表现优越。
translated by 谷歌翻译
对于由硬件和软件组件组成的复杂分布式系统而言,异常检测是一个重要的问题。对此类系统的异常检测的要求和挑战的透彻理解对于系统的安全性至关重要,尤其是对于现实世界的部署。尽管有许多解决问题的研究领域和应用领域,但很少有人试图对这种系统进行深入研究。大多数异常检测技术是针对某些应用域的专门开发的,而其他检测技术则更为通用。在这项调查中,我们探讨了基于图的算法在复杂分布式异质系统中识别和减轻不同类型异常的重要潜力。我们的主要重点是在分布在复杂分布式系统上的异质计算设备上应用时,可深入了解图。这项研究分析,比较和对比该领域的最新研究文章。首先,我们描述了现实世界分布式系统的特征及其在复杂网络中的异常检测的特定挑战,例如数据和评估,异常的性质以及现实世界的要求。稍后,我们讨论了为什么可以在此类系统中利用图形以及使用图的好处。然后,我们将恰当地深入研究最先进的方法,并突出它们的优势和劣势。最后,我们评估和比较这些方法,并指出可能改进的领域。
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
关于图表的深度学习最近吸引了重要的兴趣。然而,大多数作品都侧重于(半)监督学习,导致缺点包括重标签依赖,普遍性差和弱势稳健性。为了解决这些问题,通过良好设计的借口任务在不依赖于手动标签的情况下提取信息知识的自我监督学习(SSL)已成为图形数据的有希望和趋势的学习范例。与计算机视觉和自然语言处理等其他域的SSL不同,图表上的SSL具有独家背景,设计理念和分类。在图表的伞下自我监督学习,我们对采用图表数据采用SSL技术的现有方法及时及全面的审查。我们构建一个统一的框架,数学上正式地规范图表SSL的范例。根据借口任务的目标,我们将这些方法分为四类:基于生成的,基于辅助性的,基于对比的和混合方法。我们进一步描述了曲线图SSL在各种研究领域的应用,并总结了绘图SSL的常用数据集,评估基准,性能比较和开源代码。最后,我们讨论了该研究领域的剩余挑战和潜在的未来方向。
translated by 谷歌翻译