大量标记的医学图像对于准确检测异常是必不可少的,但是手动注释是劳动密集型且耗时的。自我监督学习(SSL)是一种培训方法,可以在没有手动注释的情况下学习特定于数据的功能。在医学图像异常检测中已采用了几种基于SSL的模型。这些SSL方法有效地学习了几个特定特定图像的表示形式,例如自然和工业产品图像。但是,由于需要医学专业知识,典型的基于SSL的模型在医疗图像异常检测中效率低下。我们提出了一个基于SSL的模型,该模型可实现基于解剖结构的无监督异常检测(UAD)。该模型采用解剖学意识粘贴(Anatpaste)增强工具。 Anatpaste采用基于阈值的肺部分割借口任务来在正常的胸部X光片上创建异常,用于模型预处理。这些异常类似于实际异常,并帮助模型识别它们。我们在三个OpenSource胸部X光片数据集上评估了我们的模型。我们的模型在曲线(AUC)下展示了92.1%,78.7%和81.9%的模型,在现有UAD模型中最高。这是第一个使用解剖信息作为借口任务的SSL模型。 Anatpaste可以应用于各种深度学习模型和下游任务。它可以通过修复适当的细分来用于其他方式。我们的代码可在以下网址公开获取:https://github.com/jun-sato/anatpaste。
translated by 谷歌翻译
我们提出了空间感知内存队列,用于从放射线照相图像中的内绘和检测异常(缩写为鱿鱼)。放射造影成像协议专注于特定的身体区域,因此在患者中产生具有良好相似性和产生复发解剖结构的图像。要利用此结构化信息,我们的鱿鱼包括一个新的内存队列和特征空间中的新型内绘制块。我们表明鱿鱼可以将根深蒂固的解剖结构分类为复发模式;在推理中,鱿鱼可以识别图像中的异常(看不见的图案)。鱿鱼在两个胸部X射线基准数据集上超过5点以上的未经监督异常检测到现有技术。此外,我们已经创建了一个新的数据集(Digitanatomy),其在胸部解剖学中合成空间相关和一致的形状。我们希望Digitanatomy可以促使异常检测方法的开发,评估和解释性,特别是用于射线照相成像。
translated by 谷歌翻译
胸部射线照相是一种相对便宜,广泛的医疗程序,可传达用于进行诊断决策的关键信息。胸部X射线几乎总是用于诊断呼吸系统疾病,如肺炎或最近的Covid-19。在本文中,我们提出了一个自我监督的深神经网络,其在未标记的胸部X射线数据集上掠夺。学习的陈述转移到下游任务 - 呼吸系统疾病的分类。在四个公共数据集获得的结果表明,我们的方法在不需要大量标记的培训数据的情况下产生竞争力。
translated by 谷歌翻译
无监督的异常检测(UAD)只需要正常(健康)训练图像是实现医学图像分析(MIA)应用的重要工具,例如疾病筛查,因为通常难以收集和注释异常(或疾病)MIA中的图像。然而,严重依赖于正常图像可能导致模型训练过度填写正常类。自我监督的预训练是对这个问题的有效解决方案。遗憾的是,从计算机视觉调整的当前自我监督方法是MIA应用的次优,因为它们不探索设计借口任务或培训过程的MIA域知识。在本文中,我们提出了一种为MIA应用设计的UAD的新的自我监督的预训练方法,通过对比学习(MSACL)命名为多级强大增强。 MSACL基于新颖的优化,以对比正常和多种合成的异常图像,每个类在欧几里德距离和余弦相似度方面强制形成紧密和密集的聚类,其中通过模拟变化数量的病变形成异常图像在正常图像中的不同尺寸和外观。在实验中,我们表明,我们的MSACL预培训使用结肠镜检查,眼底筛选和Covid-19胸部X射线数据集来提高SOTA UAD方法的准确性。
translated by 谷歌翻译
Obtaining ground truth data in medical imaging has difficulties due to the fact that it requires a lot of annotating time from the experts in the field. Also, when trained with supervised learning, it detects only the cases included in the labels. In real practice, we want to also open to other possibilities than the named cases while examining the medical images. As a solution, the need for anomaly detection that can detect and localize abnormalities by learning the normal characteristics using only normal images is emerging. With medical image data, we can design either 2D or 3D networks of self-supervised learning for anomaly detection task. Although 3D networks, which learns 3D structures of the human body, show good performance in 3D medical image anomaly detection, they cannot be stacked in deeper layers due to memory problems. While 2D networks have advantage in feature detection, they lack 3D context information. In this paper, we develop a method for combining the strength of the 3D network and the strength of the 2D network through joint embedding. We also propose the pretask of self-supervised learning to make it possible for the networks to learn efficiently. Through the experiments, we show that the proposed method achieves better performance in both classification and segmentation tasks compared to the SoTA method.
translated by 谷歌翻译
基于生成对抗网络(GAN-IT)的图像翻译是在胸部X射线图像(AL-CXR)中精确定位异常区域的一种有前途的方法。但是,异质的未配对数据集破坏了现有的方法来提取关键特征并将正常与异常情况区分开,从而导致不准确和不稳定的Al-CXR。为了解决这个问题,我们提出了涉及注册和数据增强的两阶段gan-it的改进。对于第一阶段,我们引入了一种可逆的基于学习的注册技术,该技术实际上和合理地将未配对的数据转换为配对数据以进行学习注册图。这种新颖的方法可实现高注册性能。在第二阶段,我们将数据扩展应用于均匀注册框架上的左右肺区域来多样化异常位置,从而通过减轻显示左和右肺病变的数据分布的不平衡来进一步改善性能。我们的方法旨在应用于现有的GAN-IT模型,从而使现有的体系结构受益于翻译的关键功能。通过证明应用AL-CXR的性能在应用提出的方法时均匀提高,我们认为即使学习数据稀缺,也可以在临床环境中部署Al-CXR的GAN-IT。
translated by 谷歌翻译
当前,借助监督学习方法,基于深度学习的视觉检查已取得了非常成功的成功。但是,在实际的工业场景中,缺陷样本的稀缺性,注释的成本以及缺乏缺陷的先验知识可能会使基于监督的方法无效。近年来,无监督的异常定位算法已在工业检查任务中广泛使用。本文旨在通过深入学习在工业图像中无视无视的异常定位中的最新成就来帮助该领域的研究人员。该调查回顾了120多个重要出版物,其中涵盖了异常定位的各个方面,主要涵盖了所审查方法的各种概念,挑战,分类法,基准数据集和定量性能比较。在审查迄今为止的成就时,本文提供了一些未来研究方向的详细预测和分析。这篇综述为对工业异常本地化感兴趣的研究人员提供了详细的技术信息,并希望将其应用于其他领域的异常本质。
translated by 谷歌翻译
尽管在计算机视觉中的深度学习成功,但识别微妙和小物体(或地区)的算法仍然具有挑战性。例如,识别棒球或在地面场景中的飞盘或X射线图像中的骨折可以容易地导致过度装备,除非有大量的训练数据。为缓解此问题,我们需要一种方法来强制模型应该在有限的培训数据中识别微妙地区。在本文中,我们提出了一种称为Cut \&Rest的简单但有效的监督增强方法。它在各种医学图像域(内部资源和公共数据集)和自然图像域(MS-Coco $ _S $)中取得了更好的性能,而不是其他监督的增强和明确的指导方法。此外,使用类激活图,我们确定了剪切\和保持方法驱动模型,以有效地专注于相关的微妙和小区域。我们还表明,沿着切割\和保持比单调增加的性能,表明即使仅应用了有限量的切割量,也可以提高模型,从而允许改进的低监督(注释)成本。
translated by 谷歌翻译
高质量注释的医学成像数据集的稀缺性是一个主要问题,它与医学成像分析领域的机器学习应用相撞并阻碍了其进步。自我监督学习是一种最近的培训范式,可以使学习强大的表示无需人类注释,这可以被视为有效的解决方案,以解决带注释的医学数据的稀缺性。本文回顾了自我监督学习方法的最新研究方向,用于图像数据,并将其专注于其在医学成像分析领域的应用。本文涵盖了从计算机视野领域的最新自我监督学习方法,因为它们适用于医学成像分析,并将其归类为预测性,生成性和对比性方法。此外,该文章涵盖了40个在医学成像分析中自学学习领域的最新研究论文,旨在阐明该领域的最新创新。最后,本文以该领域的未来研究指示结束。
translated by 谷歌翻译
在工业应用中,无监督的异常检测是一项艰巨的任务,因为收集足够的异常样品是不切实际的。在本文中,通过共同探索锻造异常样品的有效生成方法和正常样品特征作为分割异常检测的指导信息,提出了一种新颖的自我监督指导性分割框架(SGSF)。具体而言,为确保生成的锻造异常样品有利于模型训练,提出了显着性增强模块(SAM)。 Sam引入了显着图来产生显着性Perlin噪声图,并制定了一种自适应分割策略,以在显着区域产生不规则的掩模。然后,将口罩用于生成伪造的异常样品作为训练的负样本。不幸的是,锻造和真实异常样品之间的分布差距使得基于锻造样品训练的模型难以有效定位真实异常。为此,提出了自我监督的指导网络(SGN)。它利用自我监督的模块提取无噪声的功能,并包含正常的语义信息作为分割模块的先验知识。分割模块具有正常模式段的知识,这些片段与指导特征不同。为了评估SGSF对异常检测的有效性,在三个异常检测数据集上进行了广泛的实验。实验结果表明,SGSF达到了最新的异常检测结果。
translated by 谷歌翻译
2019年12月,一个名为Covid-19的新型病毒导致了迄今为止的巨大因果关系。与新的冠状病毒的战斗在西班牙语流感后令人振奋和恐怖。虽然前线医生和医学研究人员在控制高度典型病毒的传播方面取得了重大进展,但技术也证明了在战斗中的重要性。此外,许多医疗应用中已采用人工智能,以诊断许多疾病,甚至陷入困境的经验丰富的医生。因此,本调查纸探讨了提议的方法,可以提前援助医生和研究人员,廉价的疾病诊断方法。大多数发展中国家难以使用传统方式进行测试,但机器和深度学习可以采用显着的方式。另一方面,对不同类型的医学图像的访问已经激励了研究人员。结果,提出了一种庞大的技术数量。本文首先详细调了人工智能域中传统方法的背景知识。在此之后,我们会收集常用的数据集及其用例日期。此外,我们还显示了采用深入学习的机器学习的研究人员的百分比。因此,我们对这种情况进行了彻底的分析。最后,在研究挑战中,我们详细阐述了Covid-19研究中面临的问题,我们解决了我们的理解,以建立一个明亮健康的环境。
translated by 谷歌翻译
在胸部X射线图像中定位疾病很少仔细注释可以节省大量的人类努力。最近的作品通过创新的弱监督算法(例如多稳定学习(MIL)和类激活图(CAM))处理了这项任务,但是,这些方法通常会产生不准确或不完整的区域。原因之一是忽视了每个图像内部解剖区域的关系中隐藏的病理意义以及跨图像的关系。在本文中,我们认为,作为上下文和补偿信息的跨区域和跨图像关系对于获得更一致和更一致的区域至关重要。为了建模关系,我们提出了图形正则嵌入网络(GREN),该网络(GREN)利用图像和图像间信息来定位胸部X射线图像上的疾病。 Gren使用预先训练的U-NET来分割肺裂片,然后使用图像内图形图对肺裂片之间的内图像进行建模以比较不同的区域。同时,内部图像之间的关系是通过图像间图建模的,以比较多个图像。此过程模仿了放射科医生的训练和决策过程:比较多个区域和图像进行诊断。为了使神经网络的深层嵌入层保留结构信息(在本地化任务中很重要),我们使用哈希编码和锤击距离来计算图形,这些图形用作正规化器来促进训练。通过这种情况,我们的方法实现了NIH胸部X射线数据集的最新结果,以实现弱监督疾病的定位。我们的代码可在线访问(https://github.com/qibaolian/gren)。
translated by 谷歌翻译
无监督的异常检测旨在通过在正常数据上训练来建立模型以有效地检测看不见的异常。尽管以前的基于重建的方法取得了富有成效的进展,但由于两个危急挑战,他们的泛化能力受到限制。首先,训练数据集仅包含正常模式,这限制了模型泛化能力。其次,现有模型学到的特征表示通常缺乏代表性,妨碍了保持正常模式的多样性的能力。在本文中,我们提出了一种称为自适应存储器网络的新方法,具有自我监督的学习(AMSL)来解决这些挑战,并提高无监督异常检测中的泛化能力。基于卷积的AutoEncoder结构,AMSL包含一个自我监督的学习模块,以学习一般正常模式和自适应内存融合模块来学习丰富的特征表示。四个公共多变量时间序列数据集的实验表明,与其他最先进的方法相比,AMSL显着提高了性能。具体而言,在具有9亿个样本的最大帽睡眠阶段检测数据集上,AMSL以精度和F1分数\ TextBF {4} \%+优于第二个最佳基线。除了增强的泛化能力之外,AMSL还针对输入噪声更加强大。
translated by 谷歌翻译
脑电图(EEG)的准确自动分析将在很大程度上有助于临床医生有效监测和诊断患有各种脑部疾病的患者。与使用标记的疾病脑电图数据进行监督的学习相比,可以训练模型以分析特定疾病但无法监测以前看不见的状态,仅基于正常脑电图的异常检测才能检测到新EEG中的任何潜在异常。与现有的异常检测策略不同,这些检测策略在模型开发过程中不考虑任何不可用的异常数据的财产,这里提出了一种面向任务的自我监督学习方法,它可以利用可用的正常脑电图和有关异常EEG的专业知识来培训更有效的EEG随后开发异常检测器的特征提取器。此外,具有较大核的特定两个分支卷积神经网络被设计为特征提取器,因此它可以更容易地提取较大规模和小规模的特征,这些特征通常出现在不可用的异常脑电图中。如三个EEG数据集所示,有效设计和训练的功能提取器已证明能够根据正常数据和未来的新EEG提取更好的特征表示,以根据正常数据和未来的异常检测来开发异常检测器。该代码可在https://github.com/irining/eeg-ad上找到。
translated by 谷歌翻译
从MRI和X射线等医学图像中自动检测的自动异常可显着减少人类在疾病诊断方面的努力。由于建模异常的复杂性以及领域专家(例如放射科医生)的高度手动注释成本,因此当前医学成像文献中的典型技术仅着重于从健康对象中得出诊断模型,假设该模型将检测到图像,来自患者作为异常值。但是,在许多实际情况下,与健康和患病患者混合在一起的未注释的数据集很丰富。因此,本文提出了一个研究问题,即如何通过(1)(1)(1)(2)(2)文献中使用的一组健康图像来改善无监督的异常检测。为了回答这个问题,我们提出了一种新型的单向图像到图像翻译方法的Healthygan,该方法学会了将图像从混合数据集中转换为仅健康图像。作为一方面的Healthygan,Healthygan放宽了现有未配对的图像到图像翻译方法的循环一致性的要求,这对于混合的未注释数据是无法实现的。一旦学习了翻译,我们通过减去其翻译输出来为任何给定图像生成差异图。差异图中显着响应的区域对应于潜在异常(如果有)。我们的Healthygan在两个公开可用的数据集上优于传统的最先进方法:Covid-19和NIH Chestx-Ray14,以及从Mayo Clinic收集的一个机构数据集。该实施可在https://github.com/mahfuzmohammad/healthygan上公开获得。
translated by 谷歌翻译
在表面缺陷检测中,由于阳性和负样品数量的极度失衡,基于阳性样本的异常检测方法已受到越来越多的关注。具体而言,基于重建的方法是最受欢迎的方法。但是,退出的方法要么难以修复异常的前景或重建清晰的背景。因此,我们提出了一个清晰的内存调制自动编码器。首先,我们提出了一个新颖的清晰内存调节模块,该模块将编码和内存编码结合在一起,以忘记和输入的方式,从而修复异常的前景和保存透明背景。其次,提出了一般人工异常产生算法来模拟尽可能逼真和特征富含特征的异常。最后,我们提出了一种新型的多量表特征残差检测方法,用于缺陷分割,这使缺陷位置更加准确。 CMA-AE使用五个基准数据集上的11种最先进方法进行比较实验,显示F1量的平均平均改善平均为18.6%。
translated by 谷歌翻译
每年有大约4.5亿人受到肺炎的影响,导致250万人死亡。 Covid-19也影响了1.81亿人,这导致了392万人伤亡。如果早期诊断,两种疾病死亡可能会显着降低。然而,目前诊断肺炎(投诉+胸部X射线)和Covid-19(RT-PCR)的方法分别存在专家放射科医生和时间。在深度学习模型的帮助下,可以从胸部X射线或CT扫描立即检测肺炎和Covid-19。这样,诊断肺炎/ Covid-19的过程可以更有效和普遍地制作。在本文中,我们的目标是引出,解释和评估,定性和定量,深入学习方法的主要进步,旨在检测或定位社区获得的肺炎(帽),病毒肺炎和Covid-19从胸部X-的图像光线和CT扫描。作为一个系统的审查,本文的重点在于解释了深度学习模型架构,该架构已经被修改或从划痕,以便WIWTH对概括性的关注。对于每个模型,本文回答了模型所设计的方式的问题,特定模型克服的挑战以及修改模型到所需规格的折衷。还提供了本文描述的所有模型的定量分析,以量化不同模型的有效性与相似的目标。一些权衡无法量化,因此它们在定性分析中明确提到,在整个纸张中完成。通过在一个地方编译和分析大量的研究细节,其中包含所有数据集,模型架构和结果,我们的目标是为对此字段感兴趣的初学者和当前研究人员提供一站式解决方案。
translated by 谷歌翻译
异常识别中的一个常见研究区域是基于纹理背景的工业图像异常检测。纹理图像的干扰和纹理异常的小型性是许多现有模型无法检测异常的主要原因。我们提出了一种异常检测策略,该策略根据上述问题结合了字典学习和归一流的流程。我们的方法增强了已经使用的两阶段异常检测方法。为了改善基线方法,这项研究增加了表示学习中的正常流程,并结合了深度学习和词典学习。在实验验证后,所有MVTEC AD纹理类型数据的改进算法超过了95 $ \%$检测精度。它显示出强大的鲁棒性。地毯数据的基线方法的检测准确性为67.9%。该文章已升级,将检测准确性提高到99.7%。
translated by 谷歌翻译
我们介绍了一个简单而直观的自我实施任务,自然合成异常(NSA),用于训练仅使用正常培训数据的端到端模型,以实现异常检测和定位。NSA将Poisson图像编辑整合到来自单独图像的各种尺寸的无缝混合缩放贴片。这会产生广泛的合成异常,与以前的自我监督异常检测的数据 - 启发策略相比,它们更像自然的子图像不规则。我们使用天然和医学图像评估提出的方法。我们对MVTEC AD数据集进行的实验表明,经过训练的用于本地NSA异常的模型可以很好地概括地检测现实世界中的先验未知类型的制造缺陷。我们的方法实现了97.2的总检测AUROC,优于所有以前的方法,这些方法在不使用其他数据集的情况下学习。可在https://github.com/hmsch/natural-synthetic-anomalies上获得代码。
translated by 谷歌翻译
在过去的十年中,使用深度学习方法从胸部X光片检测到胸部X光片是一个活跃的研究领域。大多数以前的方法试图通过识别负责对模型预测的重要贡献的空间区域来关注图像的患病器官。相比之下,专家放射科医生在确定这些区域是否异常之前首先找到突出的解剖结构。因此,将解剖学知识纳入深度学习模型可能会带来自动疾病分类的大幅改善。在此激励的情况下,我们提出了解剖学XNET,这是一种基于解剖学注意的胸腔疾病分类网络,该网络优先考虑由预识别的解剖区域引导的空间特征。我们通过利用可用的小规模器官级注释来采用半监督的学习方法,将解剖区域定位在没有器官级注释的大规模数据集中。拟议的解剖学XNET使用预先训练的Densenet-121作为骨干网络,具有两个相应的结构化模块,解剖学意识到($^3 $)和概率加权平均池(PWAP),在凝聚力框架中引起解剖学的关注学习。我们通过实验表明,我们提出的方法通过在三个公开可用的大规模CXR数据集中获得85.78%,92.07%和84.04%的AUC得分来设置新的最先进基准测试。和模拟CXR。这不仅证明了利用解剖学分割知识来改善胸病疾病分类的功效,而且还证明了所提出的框架的普遍性。
translated by 谷歌翻译