When developing deep learning models, we usually decide what task we want to solve then search for a model that generalizes well on the task. An intriguing question would be: what if, instead of fixing the task and searching in the model space, we fix the model and search in the task space? Can we find tasks that the model generalizes on? How do they look, or do they indicate anything? These are the questions we address in this paper. We propose a task discovery framework that automatically finds examples of such tasks via optimizing a generalization-based quantity called agreement score. We demonstrate that one set of images can give rise to many tasks on which neural networks generalize well. These tasks are a reflection of the inductive biases of the learning framework and the statistical patterns present in the data, thus they can make a useful tool for analysing the neural networks and their biases. As an example, we show that the discovered tasks can be used to automatically create adversarial train-test splits which make a model fail at test time, without changing the pixels or labels, but by only selecting how the datapoints should be split between the train and test sets. We end with a discussion on human-interpretability of the discovered tasks.
translated by 谷歌翻译
最近证明,接受SGD训练的神经网络优先依赖线性预测的特征,并且可以忽略复杂的,同样可预测的功能。这种简单性偏见可以解释他们缺乏分布(OOD)的鲁棒性。学习任务越复杂,统计工件(即选择偏见,虚假相关性)的可能性就越大比学习的机制更简单。我们证明可以减轻简单性偏差并改善了OOD的概括。我们使用对其输入梯度对齐的惩罚来训练一组类似的模型以不同的方式拟合数据。我们从理论和经验上展示了这会导致学习更复杂的预测模式的学习。 OOD的概括从根本上需要超出I.I.D.示例,例如多个培训环境,反事实示例或其他侧面信息。我们的方法表明,我们可以将此要求推迟到独立的模型选择阶段。我们获得了SOTA的结果,可以在视觉域偏置数据和概括方面进行视觉识别。该方法 - 第一个逃避简单性偏见的方法 - 突出了需要更好地理解和控制深度学习中的归纳偏见。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
图像分类器通常在其测试设置精度上进行评分,但高精度可以屏蔽微妙类型的模型故障。我们发现高分卷积神经网络(CNNS)在流行的基准上表现出令人不安的病理,即使在没有语义突出特征的情况下,即使在没有语义突出特征的情况下也能够显示高精度。当模型提供没有突出的输入功能而无突出的频率决定时,我们说分类器已经过度解释了它的输入,找到了太多的课程 - 以对人类荒谬的模式。在这里,我们展示了在CiFar-10和Imagenet上培训的神经网络患有过度诠释,我们发现CIFAR-10上的模型即使在屏蔽95%的输入图像中,人类不能在剩余像素子集中辨别出突出的特征。我们介绍了批量梯度SIS,一种用于发现复杂数据集的足够输入子集的新方法,并使用此方法显示故事中的边界像素的充分性以进行培训和测试。虽然这些模式在现实世界部署中移植了潜在的模型脆弱性,但它们实际上是基准的有效统计模式,单独就足以实现高测试精度。与对手示例不同,过度解释依赖于未修改的图像像素。我们发现合奏和输入辍学可以帮助缓解过度诠释。
translated by 谷歌翻译
We present a framework for ranking images within their class based on the strength of spurious cues present. By measuring the gap in accuracy on the highest and lowest ranked images (we call this spurious gap), we assess spurious feature reliance for $89$ diverse ImageNet models, finding that even the best models underperform in images with weak spurious presence. However, the effect of spurious cues varies far more dramatically across classes, emphasizing the crucial, often overlooked, class-dependence of the spurious correlation problem. While most spurious features we observe are clarifying (i.e. improving test-time accuracy when present, as is typically expected), we surprisingly find many cases of confusing spurious features, where models perform better when they are absent. We then close the spurious gap by training new classification heads on lowly ranked (i.e. without common spurious cues) images, resulting in improved effective robustness to distribution shifts (ObjectNet, ImageNet-R, ImageNet-Sketch). We also propose a second metric to assess feature reliability, finding that spurious features are generally less reliable than non-spurious (core) ones, though again, spurious features can be more reliable for certain classes. To enable our analysis, we annotated $5,000$ feature-class dependencies over {\it all} of ImageNet as core or spurious using minimal human supervision. Finally, we show the feature discovery and spuriosity ranking framework can be extended to other datasets like CelebA and WaterBirds in a lightweight fashion with only linear layer training, leading to discovering a previously unknown racial bias in the Celeb-A hair classification.
translated by 谷歌翻译
我们识别普遍对抗扰动(UAP)的性质,将它们与标准的对抗性扰动区分开来。具体而言,我们表明,由投影梯度下降产生的靶向UAPS表现出两种人对齐的特性:语义局部性和空间不变性,标准的靶向对抗扰动缺乏。我们还证明,除标准对抗扰动之外,UAPS含有明显较低的泛化信号 - 即,UAPS在比标准的对抗的扰动的较小程度上利用非鲁棒特征。
translated by 谷歌翻译
深度度量学习(DML)旨在找到适合于零拍摄传输到先验未知测试分布的表示。但是,公共评估协议仅测试单个固定数据拆分,其中列车和测试类被随机分配。更现实的评估应考虑广泛的分布转变,具有潜在的变化和困难。在这项工作中,我们系统地构建了增加难度的培训 - 测试分裂,并呈现OHLML基准,以在DML中的分发外换档下表征概括。 OODML旨在探讨更具挑战性的泛化性能,多样化的火车到测试分配换档。根据我们的新基准,我们对最先进的DML方法进行了彻底的实证分析。我们发现,虽然泛化趋于难以困难地降解,但随着分布偏移的增加,一些方法在保持性能方面更好。最后,我们提出了几次拍摄的DML作为一种有效的方法,以响应于OHML中呈现的未知测试班次而始终如一地改善泛化。此处可用的代码:https://github.com/compvis/charracterizing_generalization_in_dml。
translated by 谷歌翻译
Adversarial examples have attracted significant attention in machine learning, but the reasons for their existence and pervasiveness remain unclear. We demonstrate that adversarial examples can be directly attributed to the presence of non-robust features: features (derived from patterns in the data distribution) that are highly predictive, yet brittle and (thus) incomprehensible to humans. After capturing these features within a theoretical framework, we establish their widespread existence in standard datasets. Finally, we present a simple setting where we can rigorously tie the phenomena we observe in practice to a misalignment between the (human-specified) notion of robustness and the inherent geometry of the data.
translated by 谷歌翻译
最近,已经观察到,转移学习解决方案可能是我们解决许多少量学习基准的全部 - 因此提出了有关何时以及如何部署元学习算法的重要问题。在本文中,我们试图通过1.提出一个新颖的指标(多样性系数)来阐明这些问题,以测量几次学习基准和2.的任务多样性。 )并在公平条件下进行学习(相同的体系结构,相同的优化器和所有经过培训的模型)。使用多样性系数,我们表明流行的迷你胶原和Cifar-fs几乎没有学习基准的多样性低。这种新颖的洞察力将转移学习解决方案比在公平比较的低多样性方面的元学习解决方案更好。具体而言,我们从经验上发现,低多样性系数与转移学习和MAML学习解决方案之间的高相似性在元测试时间和分类层相似性方面(使用基于特征的距离指标,例如SVCCA,PWCCA,CKA和OPD) )。为了进一步支持我们的主张,我们发现这种元测试的准确性仍然存在,即使模型大小变化也是如此。因此,我们得出的结论是,在低多样性制度中,MAML和转移学习在公平比较时具有等效的元检验性能。我们也希望我们的工作激发了对元学习基准测试基准的更周到的结构和定量评估。
translated by 谷歌翻译
我们介绍了几个新的数据集即想象的A / O和Imagenet-R以及合成环境和测试套件,我们称为CAOS。 Imagenet-A / O允许研究人员专注于想象成剩余的盲点。由于追踪稳健的表示,以特殊创建了ImageNet-R,因为表示不再简单地自然,而是包括艺术和其他演绎。 Caos Suite由Carla Simulator构建,允许包含异常物体,可以创建可重复的合成环境和用于测试稳健性的场景。所有数据集都是为测试鲁棒性和衡量鲁棒性的衡量进展而创建的。数据集已用于各种其他作品中,以衡量其具有鲁棒性的自身进步,并允许切向进展,这些进展不会完全关注自然准确性。鉴于这些数据集,我们创建了几种旨在推进鲁棒性研究的新方法。我们以最大Logit的形式和典型程度的形式构建简单的基线,并以深度的形式创建新的数据增强方法,从而提高上述基准。最大Logit考虑Logit值而不是SoftMax操作后的值,而微小的变化会产生明显的改进。典型程分将输出分布与类的后部分布进行比较。我们表明,除了分段任务之外,这将提高对基线的性能。猜测可能在像素级别,像素的语义信息比类级信息的语义信息不太有意义。最后,新的Deepaulment的新增强技术利用神经网络在彻底不同于先前使用的传统几何和相机的转换的图像上创建增强。
translated by 谷歌翻译
通过对比学习学到的表示的概括依赖于提取数据的特征。然而,我们观察到,对比损失并不总是充分引导提取的特征,可以通过无意中抑制重要预测特征来对下游任务对下游任务的性能产生负面影响的行为。我们发现特征提取受到所谓的实例歧视任务的难度的影响(即,鉴别不同分数的相似点的任务)。虽然更难以改善一些特征的表示,但改进是以抑制先前良好的特征的成本。作为响应,我们提出了隐含的特征修改(IFM),一种改变正和阴性样本的方法,以便引导对比模型来捕获更广泛的预测特征。凭经验,我们观察到IFM减少了特征抑制,结果提高了视觉和医学成像任务的性能。代码可在:\ url {https://github.com/joshr17/ifm}可用。
translated by 谷歌翻译
在新颖的类发现(NCD)中,目标是在一个未标记的集合中找到新的类,并给定一组已知但不同的类别。尽管NCD最近引起了社区的关注,但尽管非常普遍的数据表示,但尚未提出异质表格数据的框架。在本文中,我们提出了TabularNCD,这是一种在表格数据中发现新类别的新方法。我们展示了一种从已知类别中提取知识的方法,以指导包含异质变量的表格数据中新型类的发现过程。该过程的一部分是通过定义伪标签的新方法来完成的,我们遵循多任务学习中的最新发现以优化关节目标函数。我们的方法表明,NCD不仅适用于图像,而且适用于异质表格数据。进行了广泛的实验,以评估我们的方法并证明其对7种不同公共分类数据集的3个竞争对手的有效性。
translated by 谷歌翻译
近年来,计算机视觉社区中最受欢迎的技术之一就是深度学习技术。作为一种数据驱动的技术,深层模型需要大量准确标记的培训数据,这在许多现实世界中通常是无法访问的。数据空间解决方案是数据增强(DA),可以人为地从原始样本中生成新图像。图像增强策略可能因数据集而有所不同,因为不同的数据类型可能需要不同的增强以促进模型培训。但是,DA策略的设计主要由具有领域知识的人类专家决定,这被认为是高度主观和错误的。为了减轻此类问题,一个新颖的方向是使用自动数据增强(AUTODA)技术自动从给定数据集中学习图像增强策略。 Autoda模型的目的是找到可以最大化模型性能提高的最佳DA策略。这项调查从图像分类的角度讨论了Autoda技术出现的根本原因。我们确定标准自动赛车模型的三个关键组件:搜索空间,搜索算法和评估功能。根据他们的架构,我们提供了现有图像AUTODA方法的系统分类法。本文介绍了Autoda领域的主要作品,讨论了他们的利弊,并提出了一些潜在的方向以进行未来的改进。
translated by 谷歌翻译
Explainable AI transforms opaque decision strategies of ML models into explanations that are interpretable by the user, for example, identifying the contribution of each input feature to the prediction at hand. Such explanations, however, entangle the potentially multiple factors that enter into the overall complex decision strategy. We propose to disentangle explanations by finding relevant subspaces in activation space that can be mapped to more abstract human-understandable concepts and enable a joint attribution on concepts and input features. To automatically extract the desired representation, we propose new subspace analysis formulations that extend the principle of PCA and subspace analysis to explanations. These novel analyses, which we call principal relevant component analysis (PRCA) and disentangled relevant subspace analysis (DRSA), optimize relevance of projected activations rather than the more traditional variance or kurtosis. This enables a much stronger focus on subspaces that are truly relevant for the prediction and the explanation, in particular, ignoring activations or concepts to which the prediction model is invariant. Our approach is general enough to work alongside common attribution techniques such as Shapley Value, Integrated Gradients, or LRP. Our proposed methods show to be practically useful and compare favorably to the state of the art as demonstrated on benchmarks and three use cases.
translated by 谷歌翻译
可解释的人工智能(XAI)的新兴领域旨在为当今强大但不透明的深度学习模型带来透明度。尽管本地XAI方法以归因图的形式解释了个体预测,从而确定了重要特征的发生位置(但没有提供有关其代表的信息),但全局解释技术可视化模型通常学会的编码的概念。因此,两种方法仅提供部分见解,并留下将模型推理解释的负担。只有少数当代技术旨在将本地和全球XAI背后的原则结合起来,以获取更多信息的解释。但是,这些方法通常仅限于特定的模型体系结构,或对培训制度或数据和标签可用性施加其他要求,这实际上使事后应用程序成为任意预训练的模型。在这项工作中,我们介绍了概念相关性传播方法(CRP)方法,该方法结合了XAI的本地和全球观点,因此允许回答“何处”和“ where”和“什么”问题,而没有其他约束。我们进一步介绍了相关性最大化的原则,以根据模型对模型的有用性找到代表性的示例。因此,我们提高了对激活最大化及其局限性的共同实践的依赖。我们证明了我们方法在各种环境中的能力,展示了概念相关性传播和相关性最大化导致了更加可解释的解释,并通过概念图表,概念组成分析和概念集合和概念子区和概念子区和概念子集和定量研究对模型的表示和推理提供了深刻的见解。它们在细粒度决策中的作用。
translated by 谷歌翻译
We introduce Bootstrap Your Own Latent (BYOL), a new approach to self-supervised image representation learning. BYOL relies on two neural networks, referred to as online and target networks, that interact and learn from each other. From an augmented view of an image, we train the online network to predict the target network representation of the same image under a different augmented view. At the same time, we update the target network with a slow-moving average of the online network. While state-of-the art methods rely on negative pairs, BYOL achieves a new state of the art without them. BYOL reaches 74.3% top-1 classification accuracy on ImageNet using a linear evaluation with a ResNet-50 architecture and 79.6% with a larger ResNet. We show that BYOL performs on par or better than the current state of the art on both transfer and semi-supervised benchmarks. Our implementation and pretrained models are given on GitHub. 3 * Equal contribution; the order of first authors was randomly selected.
translated by 谷歌翻译
机器学习(ML)模型通常是针对给定数据集的精度进行优化的。但是,此预测标准很少捕获模型的所有理想属性,特别是它与域专家对任务的理解的匹配程度。指定的是指多种模型的存在,这些模型在其内域准确性上是无法区分的,即使它们在其他期望的属性(例如分布(OOD)性能)上有所不同。确定这些情况对于评估ML模型的可靠性至关重要。我们正式化了指定的概念,并提出了一种识别和部分解决它的方法。我们训练多个模型具有独立约束,迫使他们实施不同的功能。他们发现了预测性特征,否则标准经验风险最小化(ERM)忽略了这些特征,然后我们将其提炼成具有出色OOD性能的全球模型。重要的是,我们限制了模型以与数据歧管保持一致,以确保它们发现有意义的功能。我们在计算机视觉(拼贴,wild-camelyon17,gqa)中演示了多个数据集的方法,并讨论了指定规定的一般含义。最值得注意的是,没有其他假设,内域性能无法用于OOD模型选择。
translated by 谷歌翻译
Learning models that gracefully handle distribution shifts is central to research on domain generalization, robust optimization, and fairness. A promising formulation is domain-invariant learning, which identifies the key issue of learning which features are domain-specific versus domaininvariant. An important assumption in this area is that the training examples are partitioned into "domains" or "environments". Our focus is on the more common setting where such partitions are not provided. We propose EIIL, a general framework for domain-invariant learning that incorporates Environment Inference to directly infer partitions that are maximally informative for downstream Invariant Learning. We show that EIIL outperforms invariant learning methods on the CMNIST benchmark without using environment labels, and significantly outperforms ERM on worst-group performance in the Waterbirds and CivilComments datasets. Finally, we establish connections between EIIL and algorithmic fairness, which enables EIIL to improve accuracy and calibration in a fair prediction problem.
translated by 谷歌翻译
良好的培训数据是开发有用的ML应用程序的先决条件。但是,在许多域中,现有数据集不能由于隐私法规(例如,从医学研究)而被共享。这项工作调查了一种简单而非规范的方法,可以匿名数据综合来使第三方能够受益于此类私人数据。我们探讨了从不切实际,任务相关的刺激中隐含地学习的可行性,这通过激发训练有素的深神经网络(DNN)的神经元来合成。因此,神经元励磁用作伪生成模型。刺激数据用于培训新的分类模型。此外,我们将此框架扩展以抑制与特定个人相关的表示。我们使用开放和大型闭合临床研究的睡眠监测数据,并评估(1)最终用户是否可以创建和成功使用定制分类模型进行睡眠呼吸暂停检测,并且(2)研究中参与者的身份受到保护。广泛的比较实证研究表明,在刺激上培训的不同算法能够在与原始模型相同的任务上成功概括。然而,新和原始模型之间的架构和算法相似性在性能方面发挥着重要作用。对于类似的架构,性能接近使用真实数据(例如,精度差为0.56 \%,Kappa系数差为0.03-0.04)。进一步的实验表明,刺激可以在很大程度上成功地匿名匿名研究临床研究的参与者。
translated by 谷歌翻译
适应数据分布的结构(例如对称性和转型Imarerces)是机器学习中的重要挑战。通过架构设计或通过增强数据集,可以内在学习过程中内置Inhormces。两者都需要先验的了解对称性的确切性质。缺乏这种知识,从业者求助于昂贵且耗时的调整。为了解决这个问题,我们提出了一种新的方法来学习增强变换的分布,以新的\ emph {转换风险最小化}(trm)框架。除了预测模型之外,我们还优化了从假说空间中选择的转换。作为算法框架,我们的TRM方法是(1)有效(共同学习增强和模型,以\ emph {单训练环}),(2)模块化(使用\ emph {任何训练算法),以及(3)一般(处理\ \ ich {离散和连续}增强)。理论上与标准风险最小化的TRM比较,并在其泛化误差上给出PAC-Bayes上限。我们建议通过块组成的新参数化优化富裕的增强空间,导致新的\ EMPH {随机成分增强学习}(SCALE)算法。我们在CIFAR10 / 100,SVHN上使用先前的方法(快速自身自动化和武术器)进行实际比较规模。此外,我们表明规模可以在数据分布中正确地学习某些对称性(恢复旋转Mnist上的旋转),并且还可以改善学习模型的校准。
translated by 谷歌翻译