当代理在终身学习设置中遇到连续的新任务流时,它利用了从早期任务中获得的知识来帮助更好地学习新任务。在这种情况下,确定有效的知识表示成为一个具有挑战性的问题。大多数研究工作都建议将过去任务中的一部分示例存储在重播缓冲区中,将一组参数集成给每个任务,或通过引入正则化项来对参数进行过多的更新。尽管现有方法采用了一般任务无关的随机梯度下降更新规则,但我们提出了一个任务吸引的优化器,可根据任务之间的相关性调整学习率。我们通过累积针对每个任务的梯度来利用参数在更新过程中采取的方向。这些基于任务的累积梯度充当了在整个流中维护和更新的知识库。我们从经验上表明,我们提出的自适应学习率不仅说明了灾难性的遗忘,而且还允许积极的向后转移。我们还表明,在具有大量任务的复杂数据集中,我们的方法比终身学习中的几种最先进的方法更好。
translated by 谷歌翻译
In lifelong learning, the learner is presented with a sequence of tasks, incrementally building a data-driven prior which may be leveraged to speed up learning of a new task. In this work, we investigate the efficiency of current lifelong approaches, in terms of sample complexity, computational and memory cost. Towards this end, we first introduce a new and a more realistic evaluation protocol, whereby learners observe each example only once and hyper-parameter selection is done on a small and disjoint set of tasks, which is not used for the actual learning experience and evaluation. Second, we introduce a new metric measuring how quickly a learner acquires a new skill. Third, we propose an improved version of GEM (Lopez-Paz & Ranzato, 2017), dubbed Averaged GEM (A-GEM), which enjoys the same or even better performance as GEM, while being almost as computationally and memory efficient as EWC and other regularizationbased methods. Finally, we show that all algorithms including A-GEM can learn even more quickly if they are provided with task descriptors specifying the classification tasks under consideration. Our experiments on several standard lifelong learning benchmarks demonstrate that A-GEM has the best trade-off between accuracy and efficiency. 1
translated by 谷歌翻译
我们探索无任务持续学习(CL),其中培训模型以避免在没有明确的任务边界或身份的情况下造成灾难性的遗忘。在无任务CL上的许多努力中,一个值得注意的方法是基于内存的,存储和重放训练示例的子集。然而,由于CL模型不断更新,所以存储的示例的效用可以随时间缩短。这里,我们提出基于梯度的存储器编辑(GMED),该框架是通过梯度更新在连续输入空间中编辑存储的示例的框架,以便为重放创建更多的“具有挑战性”示例。 GMED编辑的例子仍然类似于其未编辑的形式,但可以在即将到来的模型更新中产生增加的损失,从而使未来的重播在克服灾难性遗忘方面更有效。通过施工,GMED可以与其他基于内存的CL算法一起无缝应用,以进一步改进。实验验证了GMED的有效性,以及我们最好的方法显着优于基线和以前的五个数据集中的最先进。可以在https://github.com/ink-usc/gmed找到代码。
translated by 谷歌翻译
增量任务学习(ITL)是一个持续学习的类别,试图培训单个网络以进行多个任务(一个接一个),其中每个任务的培训数据仅在培训该任务期间可用。当神经网络接受较新的任务培训时,往往会忘记旧任务。该特性通常被称为灾难性遗忘。为了解决此问题,ITL方法使用情节内存,参数正则化,掩盖和修剪或可扩展的网络结构。在本文中,我们提出了一个基于低级别分解的新的增量任务学习框架。特别是,我们表示每一层的网络权重作为几个等级1矩阵的线性组合。为了更新新任务的网络,我们学习一个排名1(或低级别)矩阵,并将其添加到每一层的权重。我们还引入了一个其他选择器向量,该向量将不同的权重分配给对先前任务的低级矩阵。我们表明,就准确性和遗忘而言,我们的方法的表现比当前的最新方法更好。与基于情节的内存和基于面具的方法相比,我们的方法还提供了更好的内存效率。我们的代码将在https://github.com/csiplab/task-increment-rank-update.git上找到。
translated by 谷歌翻译
持续学习旨在快速,不断地从一系列任务中学习当前的任务。与其他类型的方法相比,基于经验重播的方法表现出了极大的优势来克服灾难性的遗忘。该方法的一个常见局限性是上一个任务和当前任务之间的数据不平衡,这将进一步加剧遗忘。此外,如何在这种情况下有效解决稳定性困境也是一个紧迫的问题。在本文中,我们通过提出一个通过多尺度知识蒸馏和数据扩展(MMKDDA)提出一个名为Meta学习更新的新框架来克服这些挑战。具体而言,我们应用多尺度知识蒸馏来掌握不同特征级别的远程和短期空间关系的演变,以减轻数据不平衡问题。此外,我们的方法在在线持续训练程序中混合了来自情节记忆和当前任务的样品,从而减轻了由于概率分布的变化而减轻了侧面影响。此外,我们通过元学习更新来优化我们的模型,该更新诉诸于前面所看到的任务数量,这有助于保持稳定性和可塑性之间的更好平衡。最后,我们对四个基准数据集的实验评估显示了提出的MMKDDA框架对其他流行基线的有效性,并且还进行了消融研究,以进一步分析每个组件在我们的框架中的作用。
translated by 谷歌翻译
持续学习研究的主要重点领域是通过设计新算法对分布变化更强大的新算法来减轻神经网络中的“灾难性遗忘”问题。尽管持续学习文献的最新进展令人鼓舞,但我们对神经网络的特性有助于灾难性遗忘的理解仍然有限。为了解决这个问题,我们不关注持续的学习算法,而是在这项工作中专注于模型本身,并研究神经网络体系结构对灾难性遗忘的“宽度”的影响,并表明宽度在遗忘遗产方面具有出人意料的显着影响。为了解释这种效果,我们从各个角度研究网络的学习动力学,例如梯度正交性,稀疏性和懒惰的培训制度。我们提供了与不同架构和持续学习基准之间的经验结果一致的潜在解释。
translated by 谷歌翻译
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern (1) a taxonomy and extensive overview of the state-of-the-art; (2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner; (3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time and storage.
translated by 谷歌翻译
本文认为,连续学习方法可以通过分割多种模型的学习者的容量来利益。我们使用统计学习理论和实验分析来展示多种任务在单个型号培训时以非琐碎的方式互相交互。特定任务上的泛化误差可以随着协同任务培训,但在竞争任务训练时也可以恶化。该理论激励了我们名为Model动物园的方法,这是从升压文献的启发,增长了小型型号的集合,每个集中都在持续学习的一集中训练。我们展示了模型动物园的准确性提高了各种持续学习基准问题。
translated by 谷歌翻译
Lack of performance when it comes to continual learning over non-stationary distributions of data remains a major challenge in scaling neural network learning to more human realistic settings. In this work we propose a new conceptualization of the continual learning problem in terms of a temporally symmetric trade-off between transfer and interference that can be optimized by enforcing gradient alignment across examples. We then propose a new algorithm, Meta-Experience Replay (MER), that directly exploits this view by combining experience replay with optimization based meta-learning. This method learns parameters that make interference based on future gradients less likely and transfer based on future gradients more likely. 1 We conduct experiments across continual lifelong supervised learning benchmarks and non-stationary reinforcement learning environments demonstrating that our approach consistently outperforms recently proposed baselines for continual learning. Our experiments show that the gap between the performance of MER and baseline algorithms grows both as the environment gets more non-stationary and as the fraction of the total experiences stored gets smaller.
translated by 谷歌翻译
大多数元学习方法都假设存在于可用于基本知识的情节元学习的一组非常大的标记数据。这与更现实的持续学习范例形成对比,其中数据以包含不相交类的任务的形式逐步到达。在本文中,我们考虑了这个增量元学习(IML)的这个问题,其中类在离散任务中逐步呈现。我们提出了一种方法,我们调用了IML,我们称之为eCISODIC重播蒸馏(ERD),该方法将来自当前任务的类混合到当前任务中,当研究剧集时,来自先前任务的类别示例。然后将这些剧集用于知识蒸馏以最大限度地减少灾难性的遗忘。四个数据集的实验表明ERD超越了最先进的。特别是,在一次挑战的单次次数较挑战,长任务序列增量元学习场景中,我们将IML和联合训练与当前状态的3.5%/ 10.1%/ 13.4%之间的差距降低我们在Diered-ImageNet / Mini-ImageNet / CIFAR100上分别为2.6%/ 2.9%/ 5.0%。
translated by 谷歌翻译
A growing body of research in continual learning focuses on the catastrophic forgetting problem. While many attempts have been made to alleviate this problem, the majority of the methods assume a single model in the continual learning setup. In this work, we question this assumption and show that employing ensemble models can be a simple yet effective method to improve continual performance. However, ensembles' training and inference costs can increase significantly as the number of models grows. Motivated by this limitation, we study different ensemble models to understand their benefits and drawbacks in continual learning scenarios. Finally, to overcome the high compute cost of ensembles, we leverage recent advances in neural network subspace to propose a computationally cheap algorithm with similar runtime to a single model yet enjoying the performance benefits of ensembles.
translated by 谷歌翻译
持续学习旨在通过以在线学习方式利用过去获得的知识,同时能够在所有以前的任务上表现良好,从而学习一系列任务,这对人工智能(AI)系统至关重要,因此持续学习与传统学习模式相比,更适合大多数现实和复杂的应用方案。但是,当前的模型通常在每个任务上的类标签上学习一个通用表示基础,并选择有效的策略来避免灾难性的遗忘。我们假设,仅从获得的知识中选择相关且有用的零件比利用整个知识更有效。基于这一事实,在本文中,我们提出了一个新框架,名为“选择相关的在线持续学习知识(SRKOCL),该框架结合了一种额外的有效频道注意机制,以选择每个任务的特定相关知识。我们的模型还结合了经验重播和知识蒸馏,以避免灾难性的遗忘。最后,在不同的基准上进行了广泛的实验,竞争性实验结果表明,我们提出的SRKOCL是针对最先进的承诺方法。
translated by 谷歌翻译
已知应用于任务序列的标准梯度下降算法可在深层神经网络中产生灾难性遗忘。当对序列中的新任务进行培训时,该模型会在当前任务上更新其参数,从而忘记过去的知识。本文探讨了我们在有限环境中扩展任务数量的方案。这些方案由与重复数据的长期任务组成。我们表明,在这种情况下,随机梯度下降可以学习,进步并融合到根据现有文献需要持续学习算法的解决方案。换句话说,我们表明该模型在没有特定的记忆机制的情况下执行知识保留和积累。我们提出了一个新的实验框架,即Scole(缩放量表),以研究在潜在无限序列中的知识保留和算法的积累。为了探索此设置,我们对1,000个任务的序列进行了大量实验,以更好地了解这种新的设置家庭。我们还提出了对香草随机梯度下降的轻微修改,以促进这种情况下的持续学习。 SCOLE框架代表了对实用训练环境的良好模拟,并允许长序列研究收敛行为。我们的实验表明,在短方案上以前的结果不能总是推断为更长的场景。
translated by 谷歌翻译
当随着时间的推移学习任务时,人工神经网络遭受称为灾难性遗忘(CF)的问题。当在训练网络的训练过程中覆盖网络的权重,导致忘记旧信息的新任务时,会发生这种情况。为了解决这个问题,我们提出了META可重复使用的知识或标记,这是一种新的方法,可以在学习新任务时促进重量可重用性而不是覆盖。具体来说,标记在任务之间保留一组共享权重。我们将这些共享权重设定为共同的知识库(KB),不仅用于学习新任务,而且还富有以丰富的新知识,因为模型了解新任务。标记背后的关键组件是两倍。一方面,冶金学习方法提供了逐步丰富KB的关键机制,并在任务之间促进重量可重用性。另一方面,一组培训掩模提供了选择性地从KB相关权重中选择的关键机制来解决每个任务。通过使用Mark,我们实现了最普遍的基准,在几个流行的基准中实现了最新的基准,在20分拆性MiniimAgenet数据集上超过了平均精度的最佳性能方法,同时使用55%的数量来实现几乎零遗忘参数。此外,消融研究提供了证据,实际上,标记正在学习每个任务选择性地使用的可重复使用的知识。
translated by 谷歌翻译
根据互补学习系统(CLS)理论〜\ cite {mcclelland1995there}在神经科学中,人类通过两个补充系统有效\ emph {持续学习}:一种快速学习系统,以海马为中心,用于海马,以快速学习细节,个人体验,个人体验,个人体验,个人体验,个人体验,个人体验,个人体验,个人体验的快速学习, ;以及位于新皮层中的缓慢学习系统,以逐步获取有关环境的结构化知识。在该理论的激励下,我们提出\ emph {dualnets}(对于双网络),这是一个一般的持续学习框架,该框架包括一个快速学习系统,用于监督从特定任务和慢速学习系统中的模式分离代表学习,用于表示任务的慢学习系统 - 不可知论的一般代表通过自我监督学习(SSL)。双网符可以无缝地将两种表示类型纳入整体框架中,以促进在深层神经网络中更好地持续学习。通过广泛的实验,我们在各种持续的学习协议上展示了双网络的有希望的结果,从标准离线,任务感知设置到具有挑战性的在线,无任务的场景。值得注意的是,在Ctrl〜 \ Cite {veniat2020202020202020202020202020202020202020202020202020202020202021- coite {ostapenko2021-continual}的基准中。此外,我们进行了全面的消融研究,以验证双nets功效,鲁棒性和可伸缩性。代码可在\ url {https://github.com/phquang/dualnet}上公开获得。
translated by 谷歌翻译
One major obstacle towards AI is the poor ability of models to solve new problems quicker, and without forgetting previously acquired knowledge. To better understand this issue, we study the problem of continual learning, where the model observes, once and one by one, examples concerning a sequence of tasks. First, we propose a set of metrics to evaluate models learning over a continuum of data. These metrics characterize models not only by their test accuracy, but also in terms of their ability to transfer knowledge across tasks. Second, we propose a model for continual learning, called Gradient Episodic Memory (GEM) that alleviates forgetting, while allowing beneficial transfer of knowledge to previous tasks. Our experiments on variants of the MNIST and CIFAR-100 datasets demonstrate the strong performance of GEM when compared to the state-of-the-art.
translated by 谷歌翻译
机器学习中的终身学习范式是一个有吸引力的替代方案,不仅是由于其与生物学学习的相似之处,而且它通过避免过度模型重新训练来减少能量浪费的可能性。对此范式的关键挑战是灾难性遗忘的现象。随着在机器学习中训练有素的模型的越来越受欢迎和成功,我们提出了问题:终身学习中的训练前比赛,特别是关于灾难性的遗忘?我们在大型预先训练模型的上下文中调查现有方法,并在各种文本和图像分类任务中评估其性能,包括使用15个不同的NLP任务的新型数据集进行大规模研究。在所有设置中,我们观察到,通用预训练隐含地减轻了在与随机初始化模型相比依次学习多个任务时灾难性忘记的影响。然后,我们进一步调查为什么预先训练缓解在这个环境中忘记。我们通过分析损失景观来研究这种现象,发现预先训练的重量似乎可以通过导致更宽的最小值来缓解遗忘。基于这一洞察力,我们提出了对当前任务损失和损失盆地锐利的共同优化,以便在连续微调期间明确鼓励更广泛的盆地。我们表明,这种优化方法导致与跨多个设置的任务顺序持续学习的性能相当,而无需保留具有任务数量的大小的内存。
translated by 谷歌翻译
持续学习需要模型来学习新任务,同时保持先前学识到的知识。已经提出了各种算法来解决这一真正的挑战。到目前为止,基于排练的方法,例如经验重播,取得了最先进的性能。这些方法将过去任务的一小部分保存为内存缓冲区,以防止模型忘记以前学识的知识。但是,它们中的大多数情况都同样对待每一个新任务,即,在学习不同的新任务时修复了框架的超级参数。这样的设置缺乏对过去和新任务之间的关系/相似性的考虑。例如,与从公共汽车中学到的人相比,从狗的知识/特征比识别猫(新任务)更有益。在这方面,我们提出了一种基于BI级优化的元学习算法,以便自适应地调整从过去和新任务中提取的知识之间的关系。因此,该模型可以在持续学习期间找到适当的梯度方向,避免在内存缓冲区上的严重过度拟合问题。广泛的实验是在三个公开的数据集(即CiFar-10,CiFar-100和微小想象网)上进行的。实验结果表明,该方法可以一致地改善所有基线的性能。
translated by 谷歌翻译
人类智慧的主食是以不断的方式获取知识的能力。在Stark对比度下,深网络忘记灾难性,而且为此原因,类增量连续学习促进方法的子字段逐步学习一系列任务,将顺序获得的知识混合成综合预测。这项工作旨在评估和克服我们以前提案黑暗体验重播(Der)的陷阱,这是一种简单有效的方法,将排练和知识蒸馏结合在一起。灵感来自于我们的思想不断重写过去的回忆和对未来的期望,我们赋予了我的能力,即我的能力来修改其重播记忆,以欢迎有关过去数据II的新信息II)为学习尚未公开的课程铺平了道路。我们表明,这些策略的应用导致了显着的改进;实际上,得到的方法 - 被称为扩展-DAR(X-DER) - 优于标准基准(如CiFar-100和MiniimAgeNet)的技术状态,并且这里引入了一个新颖的。为了更好地了解,我们进一步提供了广泛的消融研究,以证实并扩展了我们以前研究的结果(例如,在持续学习设置中知识蒸馏和漂流最小值的价值)。
translated by 谷歌翻译
一组复杂的机制促进了大脑中的持续学习(CL)。这包括用于整合信息的多个内存系统的相互作用,如互补学习系统(CLS)理论和突触巩固,以保护获得的知识免受擦除。因此,我们提出了一种通用CL方法,该方法在突触巩固和双重记忆体验重播(Synergy)之间产生协同作用。我们的方法保持语义记忆,该记忆积累并巩固了整个任务中的信息,并与情节内存进行交互以有效重播。它通过跟踪训练轨迹期间参数的重要性并将其固定在语义内存中的巩固参数中,进一步采用了突触巩固。据我们所知,我们的研究是第一个与突触合并一起使用双重记忆体验重播的,该合并适用于一般CL,网络在培训或推理过程中不利用任务边界或任务标签。我们对各种具有挑战性的CL情景和特征分析的评估表明,将突触巩固和CLS理论纳入启用DNN中的有效CL的功效。
translated by 谷歌翻译