Realistic synthetic image data rendered from 3D models can be used to augment image sets and train image classification semantic segmentation models. In this work, we explore how high quality physically-based rendering and domain randomization can efficiently create a large synthetic dataset based on production 3D CAD models of a real vehicle. We use this dataset to quantify the effectiveness of synthetic augmentation using U-net and Double-U-net models. We found that, for this domain, synthetic images were an effective technique for augmenting limited sets of real training data. We observed that models trained on purely synthetic images had a very low mean prediction IoU on real validation images. We also observed that adding even very small amounts of real images to a synthetic dataset greatly improved accuracy, and that models trained on datasets augmented with synthetic images were more accurate than those trained on real images alone. Finally, we found that in use cases that benefit from incremental training or model specialization, pretraining a base model on synthetic images provided a sizeable reduction in the training cost of transfer learning, allowing up to 90\% of the model training to be front-loaded.
translated by 谷歌翻译
Recently, the use of synthetic training data has been on the rise as it offers correctly labelled datasets at a lower cost. The downside of this technique is that the so-called domain gap between the real target images and synthetic training data leads to a decrease in performance. In this paper, we attempt to provide a holistic overview of how to use synthetic data for object detection. We analyse aspects of generating the data as well as techniques used to train the models. We do so by devising a number of experiments, training models on the Dataset of Industrial Metal Objects (DIMO). This dataset contains both real and synthetic images. The synthetic part has different subsets that are either exact synthetic copies of the real data or are copies with certain aspects randomised. This allows us to analyse what types of variation are good for synthetic training data and which aspects should be modelled to closely match the target data. Furthermore, we investigate what types of training techniques are beneficial towards generalisation to real data, and how to use them. Additionally, we analyse how real images can be leveraged when training on synthetic images. All these experiments are validated on real data and benchmarked to models trained on real data. The results offer a number of interesting takeaways that can serve as basic guidelines for using synthetic data for object detection. Code to reproduce results is available at https://github.com/EDM-Research/DIMO_ObjectDetection.
translated by 谷歌翻译
One of the biggest challenges in machine learning is data collection. Training data is an important part since it determines how the model will behave. In object classification, capturing a large number of images per object and in different conditions is not always possible and can be very time-consuming and tedious. Accordingly, this work explores the creation of artificial images using a game engine to cope with limited data in the training dataset. We combine real and synthetic data to train the object classification engine, a strategy that has shown to be beneficial to increase confidence in the decisions made by the classifier, which is often critical in industrial setups. To combine real and synthetic data, we first train the classifier on a massive amount of synthetic data, and then we fine-tune it on real images. Another important result is that the amount of real images needed for fine-tuning is not very high, reaching top accuracy with just 12 or 24 images per class. This substantially reduces the requirements of capturing a great amount of real data.
translated by 谷歌翻译
深度学习模型在机器人技术中的有用性在很大程度上取决于培训数据的可用性。培训数据的手动注释通常是不可行的。合成数据是可行的替代方法,但遭受了域间隙。我们提出了一种多步方法,以获取训练数据而无需手动注释:从3D对象网格中,我们使用现代合成管道生成图像。我们利用一种最先进的图像到图像翻译方法来使合成图像适应真实域,以学习的方式最大程度地减少域间隙。翻译网络是从未配对的图像中训练的,即仅需要未经通知的真实图像集合。然后,生成和精致的图像可用于训练深度学习模型以完成特定任务。我们还建议并评估翻译方法的扩展,以进一步提高性能,例如基于补丁的训练,从而缩短了训练时间并增加了全球一致性。我们评估我们的方法并证明其在两个机器人数据集上的有效性。我们终于深入了解了博学的改进操作。
translated by 谷歌翻译
Bridging the 'reality gap' that separates simulated robotics from experiments on hardware could accelerate robotic research through improved data availability. This paper explores domain randomization, a simple technique for training models on simulated images that transfer to real images by randomizing rendering in the simulator. With enough variability in the simulator, the real world may appear to the model as just another variation. We focus on the task of object localization, which is a stepping stone to general robotic manipulation skills. We find that it is possible to train a real-world object detector that is accurate to 1.5 cm and robust to distractors and partial occlusions using only data from a simulator with non-realistic random textures. To demonstrate the capabilities of our detectors, we show they can be used to perform grasping in a cluttered environment. To our knowledge, this is the first successful transfer of a deep neural network trained only on simulated RGB images (without pre-training on real images) to the real world for the purpose of robotic control.
translated by 谷歌翻译
在非结构化环境中工作的机器人必须能够感知和解释其周围环境。机器人技术领域基于深度学习模型的主要障碍之一是缺乏针对不同工业应用的特定领域标记数据。在本文中,我们提出了一种基于域随机化的SIM2REAL传输学习方法,用于对象检测,可以自动生成任意大小和对象类型的标记的合成数据集。随后,对最先进的卷积神经网络Yolov4进行了训练,以检测不同类型的工业对象。通过提出的域随机化方法,我们可以在零射击和单次转移的情况下分别缩小现实差距,分别达到86.32%和97.38%的MAP50分数,其中包含190个真实图像。在GEFORCE RTX 2080 TI GPU上,数据生成过程的每图像少于0.5 s,培训持续约12H,这使其方便地用于工业使用。我们的解决方案符合工业需求,因为它可以通过仅使用1个真实图像进行培训来可靠地区分相似的对象类别。据我们所知,这是迄今为止满足这些约束的唯一工作。
translated by 谷歌翻译
近年来,人员检测和人类姿势估计已经取得了很大的进步,通过大规模标记的数据集帮助。但是,这些数据集没有保证或分析人类活动,姿势或情境多样性。此外,隐私,法律,安全和道德问题可能会限制收集更多人类数据的能力。一个新兴的替代方案,用于减轻这些问题的一些问题是合成数据。然而,综合数据生成器的创建令人难以置信的具有挑战性,并防止研究人员探索他们的实用性。因此,我们释放了一个以人为本的合成数据发生器PeoplesAnspeople,它包含模拟就绪3D人类资产,参数化照明和相机系统,并生成2D和3D边界框,实例和语义分段,以及Coco姿态标签。使用PeoplesAnspeople,我们使用Detectron2 KeyPoint R-CNN变体进行基准合成数据训练[1]。我们发现,使用合成数据进行预培训网络和对目标现实世界数据的微调(几次传输到Coco-Person Rain的有限子集[2])导致了60.37 $ 60.37 $的关键点AP( Coco Test-Dev2017)使用相同的实际数据培训的型号优于同一实际数据(35.80美元的Keypoint AP),并使用Imagenet预先培训(Keypoint AP为57.50美元)。这种自由可用的数据发生器应使其在人用于人工以人为主的计算机视野中的临界领域进行实际转移学习的新兴仿真领域。
translated by 谷歌翻译
The International Workshop on Reading Music Systems (WoRMS) is a workshop that tries to connect researchers who develop systems for reading music, such as in the field of Optical Music Recognition, with other researchers and practitioners that could benefit from such systems, like librarians or musicologists. The relevant topics of interest for the workshop include, but are not limited to: Music reading systems; Optical music recognition; Datasets and performance evaluation; Image processing on music scores; Writer identification; Authoring, editing, storing and presentation systems for music scores; Multi-modal systems; Novel input-methods for music to produce written music; Web-based Music Information Retrieval services; Applications and projects; Use-cases related to written music. These are the proceedings of the 3rd International Workshop on Reading Music Systems, held in Alicante on the 23rd of July 2021.
translated by 谷歌翻译
深度神经网络在人类分析中已经普遍存在,增强了应用的性能,例如生物识别识别,动作识别以及人重新识别。但是,此类网络的性能通过可用的培训数据缩放。在人类分析中,对大规模数据集的需求构成了严重的挑战,因为数据收集乏味,廉价,昂贵,并且必须遵守数据保护法。当前的研究研究了\ textit {合成数据}的生成,作为在现场收集真实数据的有效且具有隐私性的替代方案。这项调查介绍了基本定义和方法,在生成和采用合成数据进行人类分析时必不可少。我们进行了一项调查,总结了当前的最新方法以及使用合成数据的主要好处。我们还提供了公开可用的合成数据集和生成模型的概述。最后,我们讨论了该领域的局限性以及开放研究问题。这项调查旨在为人类分析领域的研究人员和从业人员提供。
translated by 谷歌翻译
牡蛎在海湾生活生态系统中起着关键作用,被认为是海洋的生命过滤器。近年来,牡蛎礁经过商业过度收获造成的重大破坏,需要保存以维持生态平衡。该保存的基础是估计需要准确的牡蛎检测的牡蛎密度。但是,用于准确的牡蛎检测系统需要大量数据集获得,这是水下环境中一项昂贵且劳动密集型的任务。为此,我们提出了一种新颖的方法,可以数学上对牡蛎进行建模并在模拟中渲染牡蛎的图像,以使用最小的真实数据来提高检测性能。利用我们的合成数据以及用于牡蛎检测的真实数据,与仅使用牡蛎网络仅使用真实数据相比,我们获得了高达35.1%的性能。我们还将最先进的工作提高了12.7%。这表明,使用对象的基本几何属性可以帮助成功提高有限数据集上的识别任务准确性,我们希望更多的研究人员对难以实现的数据集采用这种策略。
translated by 谷歌翻译
Recent large-scale image generation models such as Stable Diffusion have exhibited an impressive ability to generate fairly realistic images starting from a very simple text prompt. Could such models render real images obsolete for training image prediction models? In this paper, we answer part of this provocative question by questioning the need for real images when training models for ImageNet classification. More precisely, provided only with the class names that have been used to build the dataset, we explore the ability of Stable Diffusion to generate synthetic clones of ImageNet and measure how useful they are for training classification models from scratch. We show that with minimal and class-agnostic prompt engineering those ImageNet clones we denote as ImageNet-SD are able to close a large part of the gap between models produced by synthetic images and models trained with real images for the several standard classification benchmarks that we consider in this study. More importantly, we show that models trained on synthetic images exhibit strong generalization properties and perform on par with models trained on real data.
translated by 谷歌翻译
获取数据以培训基于深入的学习的对象探测器(无人机)昂贵,耗时,甚至可以在特定环境中禁止。另一方面,合成数据快速且便宜。在这项工作中,我们探讨了在各种应用环境中从UVS探讨了对象检测中的合成数据。为此,我们将开源框架DeepGtav扩展到UAV方案的工作。我们在多个域中捕获各种大规模的高分辨率合成数据集,以通过分析多种型号的多种培训策略来展示它们在真实对象检测中的使用。此外,我们分析了几种不同的数据生成和采样参数,以提供可操作的工程建议,以获得进一步的科学研究。DeepGTAV框架可在https://git.io/jyf5j提供。
translated by 谷歌翻译
本文介绍了基于仅使用合成数据训练的深卷积神经网络的人体部位分割的新框架。该方法实现了尖端的结果,而无需培训具有人体部位的真实注释数据的模型。我们的贡献包括数据生成管道,该管道利用游戏引擎来创建用于训练网络的合成数据,以及一种结合边缘响应映射和自适应直方图均衡的新型预处理模块,以指导网络来学习网络人体部位的形状确保对照明条件的变化的稳健性。为了选择最佳候选架构,我们对真正的人体四肢的手动注释图像进行详尽的测试。我们进一步将我们的方法与若干高端商业分割工具进行了对体零分割任务的几个。结果表明,我们的方法通过显着的余量优于其他模型。最后,我们展示了一个消融研究来验证我们的预处理模块。通过本文,我们释放了所提出的方法以及所获取的数据集的实现。
translated by 谷歌翻译
海洋生态系统及其鱼类栖息地越来越重要,因为它们在提供有价值的食物来源和保护效果方面的重要作用。由于它们的偏僻且难以接近自然,因此通常使用水下摄像头对海洋环境和鱼类栖息地进行监测。这些相机产生了大量数字数据,这些数据无法通过当前的手动处理方法有效地分析,这些方法涉及人类观察者。 DL是一种尖端的AI技术,在分析视觉数据时表现出了前所未有的性能。尽管它应用于无数领域,但仍在探索其在水下鱼类栖息地监测中的使用。在本文中,我们提供了一个涵盖DL的关键概念的教程,该教程可帮助读者了解对DL的工作原理的高级理解。该教程还解释了一个逐步的程序,讲述了如何为诸如水下鱼类监测等挑战性应用开发DL算法。此外,我们还提供了针对鱼类栖息地监测的关键深度学习技术的全面调查,包括分类,计数,定位和细分。此外,我们对水下鱼类数据集进行了公开调查,并比较水下鱼类监测域中的各种DL技术。我们还讨论了鱼类栖息地加工深度学习的新兴领域的一些挑战和机遇。本文是为了作为希望掌握对DL的高级了解,通过遵循我们的分步教程而为其应用开发的海洋科学家的教程,并了解如何发展其研究,以促进他们的研究。努力。同时,它适用于希望调查基于DL的最先进方法的计算机科学家,以进行鱼类栖息地监测。
translated by 谷歌翻译
鉴于一个人的肖像图像和目标照明的环境图,肖像重新旨在重新刷新图像中的人,就好像该人出现在具有目标照明的环境中一样。为了获得高质量的结果,最近的方法依靠深度学习。一种有效的方法是用高保真输入输出对的高保真数据集监督对深神经网络的培训,并以光阶段捕获。但是,获取此类数据需要昂贵的特殊捕获钻机和耗时的工作,从而限制了对少数机智的实验室的访问。为了解决限制,我们提出了一种新方法,该方法可以与最新的(SOTA)重新确定方法相提并论,而无需光阶段。我们的方法基于这样的意识到,肖像图像的成功重新重新取决于两个条件。首先,该方法需要模仿基于物理的重新考虑的行为。其次,输出必须是逼真的。为了满足第一个条件,我们建议通过通过虚拟光阶段生成的训练数据来训练重新网络,该培训数据在不同的环境图下对各种3D合成人体进行了基于物理的渲染。为了满足第二种条件,我们开发了一种新型的合成对真实方法,以将光真实主义带入重新定向网络输出。除了获得SOTA结果外,我们的方法还提供了与先前方法相比的几个优点,包括可控的眼镜和更暂时的结果以重新欣赏视频。
translated by 谷歌翻译
我们向传感器独立性(Sensei)介绍了一种新型神经网络架构 - 光谱编码器 - 通过该传感器独立性(Sensei) - 通过其中具有不同组合的光谱频带组合的多个多光谱仪器可用于训练广义深度学习模型。我们专注于云屏蔽的问题,使用几个预先存在的数据集,以及Sentinel-2的新的自由可用数据集。我们的模型显示在卫星上实现最先进的性能,它受过训练(Sentinel-2和Landsat 8),并且能够推断到传感器,它在训练期间尚未见过Landsat 7,每\ 'USAT-1,和Sentinel-3 SLST。当多种卫星用于培训,接近或超越专用单传感器型号的性能时,模型性能显示出改善。这项工作是激励遥感社区可以使用巨大各种传感器采取的数据的动机。这不可避免地导致标记用于不同传感器的努力,这限制了深度学习模型的性能,因为他们需要最佳地执行巨大的训练。传感器独立性可以使深度学习模型能够同时使用多个数据集进行培训,提高性能并使它们更广泛适用。这可能导致深入学习方法,用于在板载应用程序和地面分段数据处理中更频繁地使用,这通常需要模型在推出时或之后即将开始。
translated by 谷歌翻译
在离岸部门以及科学界在水下行动方面的迅速发展,水下车辆变得更加复杂。值得注意的是,许多水下任务,包括对海底基础设施的评估,都是在自动水下车辆(AUV)的帮助下进行的。最近在人工智能(AI)方面取得了突破,尤其是深度学习(DL)模型和应用,这些模型和应用在各种领域都广泛使用,包括空中无人驾驶汽车,自动驾驶汽车导航和其他应用。但是,由于难以获得特定应用的水下数据集,它们在水下应用中并不普遍。从这个意义上讲,当前的研究利用DL领域的最新进步来构建从实验室环境中捕获的物品照片产生的定制数据集。通过将收集到的图像与包含水下环境的照片相结合,将生成的对抗网络(GAN)用于将实验室对象数据集转化为水下域。这些发现证明了创建这样的数据集的可行性,因为与现实世界的水下船体船体图像相比,所得图像与真实的水下环境非常相似。因此,水下环境的人工数据集可以克服因对实际水下图像的有限访问而引起的困难,并用于通过水下对象图像分类和检测来增强水下操作。
translated by 谷歌翻译
Jitendra Malik once said, "Supervision is the opium of the AI researcher". Most deep learning techniques heavily rely on extreme amounts of human labels to work effectively. In today's world, the rate of data creation greatly surpasses the rate of data annotation. Full reliance on human annotations is just a temporary means to solve current closed problems in AI. In reality, only a tiny fraction of data is annotated. Annotation Efficient Learning (AEL) is a study of algorithms to train models effectively with fewer annotations. To thrive in AEL environments, we need deep learning techniques that rely less on manual annotations (e.g., image, bounding-box, and per-pixel labels), but learn useful information from unlabeled data. In this thesis, we explore five different techniques for handling AEL.
translated by 谷歌翻译
传统上,本征成像或内在图像分解被描述为将图像分解为两层:反射率,材料的反射率;和一个阴影,由光和几何之间的相互作用产生。近年来,深入学习技术已广泛应用,以提高这些分离的准确性。在本调查中,我们概述了那些在知名内在图像数据集和文献中使用的相关度量的结果,讨论了预测所需的内在图像分解的适用性。虽然Lambertian的假设仍然是许多方法的基础,但我们表明,对图像形成过程更复杂的物理原理组件的潜力越来越意识到,这是光学准确的材料模型和几何形状,更完整的逆轻型运输估计。考虑使用的前瞻和模型以及驾驶分解过程的学习架构和方法,我们将这些方法分类为分解的类型。考虑到最近神经,逆和可微分的渲染技术的进步,我们还提供了关于未来研究方向的见解。
translated by 谷歌翻译
A major challenge in machine learning is resilience to out-of-distribution data, that is data that exists outside of the distribution of a model's training data. Training is often performed using limited, carefully curated datasets and so when a model is deployed there is often a significant distribution shift as edge cases and anomalies not included in the training data are encountered. To address this, we propose the Input Optimisation Network, an image preprocessing model that learns to optimise input data for a specific target vision model. In this work we investigate several out-of-distribution scenarios in the context of semantic segmentation for autonomous vehicles, comparing an Input Optimisation based solution to existing approaches of finetuning the target model with augmented training data and an adversarially trained preprocessing model. We demonstrate that our approach can enable performance on such data comparable to that of a finetuned model, and subsequently that a combined approach, whereby an input optimization network is optimised to target a finetuned model, delivers superior performance to either method in isolation. Finally, we propose a joint optimisation approach, in which input optimization network and target model are trained simultaneously, which we demonstrate achieves significant further performance gains, particularly in challenging edge-case scenarios. We also demonstrate that our architecture can be reduced to a relatively compact size without a significant performance impact, potentially facilitating real time embedded applications.
translated by 谷歌翻译