最近提出的一类模型试图使用哈密顿力学所通知的前沿,从高维观察中学习潜在动态的潜在动态。虽然这些模型在机器人或自主驾驶等领域具有重要潜在应用,但目前没有好方法来评估它们的性能:现有方法主要依赖于图像重建质量,这并不总是反映学习潜在动态的质量。在这项工作中,我们经验突出了现有措施的问题,并制定了一套新措施,包括依赖母亲哈密顿动态的二进制指标,我们称之为符号度量或次称。我们的措施利用了汉密尔顿动态的已知属性,并且更符合模型捕获潜在动态的能力而不是重建误差。使用Symetric,我们识别一组架构选择,可以显着提高先前提出的模型的性能,用于从像素,Hamiltonian生成网络(HGN)从像素推断潜在动态。与原始HGN不同,新的HGN ++能够在某些数据集中发现具有物理有意义的潜伏的可解释的相位空间。此外,它在不同范围的13个数据集上的卷展栏上是稳定的,在一个不同的13个数据集上产生基本上无限长度的卷展栏,在数据集的子集上没有质量下降。
translated by 谷歌翻译
学习动态是机器学习(ML)的许多重要应用的核心,例如机器人和自主驾驶。在这些设置中,ML算法通常需要推理使用高维观察的物理系统,例如图像,而不访问底层状态。最近,已经提出了几种方法将从经典机制的前沿集成到ML模型中,以解决图像的物理推理的挑战。在这项工作中,我们清醒了这些模型的当前功能。为此,我们介绍一套由17个数据集组成的套件,该数据集基于具有呈现各种动态的物理系统的视觉观测。我们对几种强大的基线进行了彻底的和详细比较了物理启发方法的主要类别。虽然包含物理前沿的模型通常可以学习具有所需特性的潜在空间,但我们的结果表明这些方法无法显着提高标准技术。尽管如此,我们发现使用连续和时间可逆动力学的使用效益所有课程的模型。
translated by 谷歌翻译
Even though neural networks enjoy widespread use, they still struggle to learn the basic laws of physics. How might we endow them with better inductive biases? In this paper, we draw inspiration from Hamiltonian mechanics to train models that learn and respect exact conservation laws in an unsupervised manner. We evaluate our models on problems where conservation of energy is important, including the two-body problem and pixel observations of a pendulum. Our model trains faster and generalizes better than a regular neural network. An interesting side effect is that our model is perfectly reversible in time. Ideal mass-spring system Noisy observations Baseline NN Prediction Prediction Hamiltonian NN Figure 1: Learning the Hamiltonian of a mass-spring system. The variables q and p correspond to position and momentum coordinates. As there is no friction, the baseline's inner spiral is due to model errors. By comparison, the Hamiltonian Neural Network learns to exactly conserve a quantity that is analogous to total energy. Preprint. Under review.
translated by 谷歌翻译
在许多现实世界中,当不二维测量值时,可能会提供自由旋转3D刚体(例如卫星)的图像观察。但是,图像数据的高维度排除了学习动力学和缺乏解释性的使用,从而降低了标准深度学习方法的有用性。在这项工作中,我们提出了一个物理知识的神经网络模型,以估计和预测图像序列中的3D旋转动力学。我们使用多阶段预测管道实现了这一目标,该管道将单个图像映射到潜在表示同构为$ \ Mathbf {so}(3)$,从潜在对计算角速度,并使用Hamiltonian Motion使用Hamiltonian运动方程来预测未来的潜在状态博学的哈密顿人的代表。我们证明了方法对新的旋转刚体数据集的功效,该数据集具有旋转立方体和矩形棱镜序列,并具有均匀且不均匀的密度。
translated by 谷歌翻译
在许多科学学科中,我们有兴趣推断一组观察到的时间序列的非线性动力学系统,这是面对混乱的行为和噪音,这是一项艰巨的任务。以前的深度学习方法实现了这一目标,通常缺乏解释性和障碍。尤其是,即使基本动力学生存在较低维的多种多样的情况下,忠实嵌入通常需要的高维潜在空间也会阻碍理论分析。在树突计算的新兴原则的推动下,我们通过线性样条基础扩展增强了动态解释和数学可牵引的分段线性(PL)复发性神经网络(RNN)。我们表明,这种方法保留了简单PLRNN的所有理论上吸引人的特性,但在相对较低的尺寸中提高了其近似任意非线性动态系统的能力。我们采用两个框架来训练该系统,一个将反向传播的时间(BPTT)与教师强迫结合在一起,另一个将基于快速可扩展的变异推理的基础。我们表明,树枝状扩展的PLRNN可以在各种动力学系统基准上获得更少的参数和尺寸,并与其他方法进行比较,同时保留了可拖动和可解释的结构。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
我们为高维顺序数据提出了深度潜在的变量模型。我们的模型将潜在空间分解为内容和运动变量。为了模拟多样化的动态,我们将运动空间分成子空间,并为每个子空间引入一个独特的哈密顿运算符。Hamiltonian配方提供可逆动态,学习限制运动路径以保护不变性属性。运动空间的显式分裂将哈密顿人分解成对称组,并提供动态的长期可分离性。这种拆分也意味着可以学习的表示,这很容易解释和控制。我们展示了我们模型来交换两个视频的运动,从给定的图像和无条件序列生成产生各种动作的序列。
translated by 谷歌翻译
用神经网络对物理系统的动力学建模的最新方法强制执行拉格朗日式或哈密顿结构,以改善预测和泛化。但是,当将坐标嵌入高维数据(例如图像)中时,这些方法要么失去解释性,要么只能应用于一个特定示例。我们介绍了一种新的无监督神经网络模型,该模型从图像中学习拉格朗日动态,并具有受益于预测和控制的解释性。该模型在广义坐标上渗透Lagrangian动力学,这些动力学是通过坐标感知的变异自动编码器(VAE)同时学习的。 VAE旨在说明由飞机中多个刚体组成的物理系统的几何形状。通过推断可解释的拉格朗日动力学,该模型学习了物理系统属性,例如动力学和势能,从而可以长期预测图像空间中的动力学和基于能量控制器的合成。
translated by 谷歌翻译
从非正规化概率分布的抽样是机器学习中的基本问题,包括贝叶斯建模,潜在因子推断和基于能源的模型训练。在几十年的研究之后,尽管收敛缓慢,但MCMC的变化仍然是抽样的默认方法。辅助神经模型可以学习加速MCMC,但训练额外模型的开销可能是禁止的。我们通过具有非牛顿势头的新的汉密尔顿动态提出了对这个问题的根本不同的方法。与MCMC蒙特卡洛等MCMC接近相比,不需要随机步骤。相反,在扩展状态空间中提出的确定性动态精确地对能量函数指定的目标分布,在ergodicity的假设下。或者,可以将动态解释为在没有训练的情况下对指定的能量模型进行采样的标准化流程。所提出的能量采样哈密尔顿(ESH)动态有一个简单的形式,可以用现有的颂歌解决,但我们推出了一个专业的求解器,它表现出更好的性能。 ESH Dynamics会收敛于其MCMC竞争对手的速度更快,更稳定地培训神经网络能量模型。
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
物理学的美在于,通常在变化的系统(称为运动常数)中保守数量。找到运动的常数对于理解系统的动力学很重要,但通常需要数学水平和手动分析工作。在本文中,我们提出了一个神经网络,该网络可以同时了解系统的动力学和来自数据的运动常数。通过利用发现的运动常数,它可以对动态产生更好的预测,并且可以比基于哈密顿的神经网络在更广泛的系统上工作。此外,我们方法的训练进展可以用作系统中运动常数数量的指示,该系统可用于研究新型物理系统。
translated by 谷歌翻译
In this thesis, we consider two simple but typical control problems and apply deep reinforcement learning to them, i.e., to cool and control a particle which is subject to continuous position measurement in a one-dimensional quadratic potential or in a quartic potential. We compare the performance of reinforcement learning control and conventional control strategies on the two problems, and show that the reinforcement learning achieves a performance comparable to the optimal control for the quadratic case, and outperforms conventional control strategies for the quartic case for which the optimal control strategy is unknown. To our knowledge, this is the first time deep reinforcement learning is applied to quantum control problems in continuous real space. Our research demonstrates that deep reinforcement learning can be used to control a stochastic quantum system in real space effectively as a measurement-feedback closed-loop controller, and our research also shows the ability of AI to discover new control strategies and properties of the quantum systems that are not well understood, and we can gain insights into these problems by learning from the AI, which opens up a new regime for scientific research.
translated by 谷歌翻译
能量保护是许多物理现象和动态系统的核心。在过去的几年中,有大量作品旨在预测使用神经网络的动力系统运动轨迹,同时遵守能源保护法。这些作品中的大多数受到古典力学的启发,例如哈密顿和拉格朗日力学以及神经普通微分方程。尽管这些作品已被证明在特定领域中分别很好地工作,但缺乏统一的方法,该方法通常不适用,而无需对神经网络体系结构进行重大更改。在这项工作中,我们旨在通过提供一种简单的方法来解决此问题,该方法不仅可以应用于能源持持势的系统,还可以应用于耗散系统,通过在不同情况下以不同的情况在不同情况下以正规化术语形式包括不同的归纳偏见。损失功能。所提出的方法不需要更改神经网络体系结构,并且可以构成验证新思想的基础,因此表明有望在这个方向上加速研究。
translated by 谷歌翻译
深度学习模型能够近似一个特定的动力系统,但在学习通用动力学方面挣扎,在该动态系统中,动态系统遵守了相同的物理定律,但包含不同数量的元素(例如,双重和三铅系统)。为了缓解这个问题,我们提出了模块化拉​​格朗日网络(ModLanet),这是一个具有模块化和物理诱导偏置的结构神经网络框架。该框架使用模块化对每个元素的能量进行建模,然后通过拉格朗日力学构建目标动态系统。模块化有益于重复训练的网络和减少网络和数据集的规模。结果,我们的框架可以从更简单的系统的动力学中学习,并扩展到更复杂的框架,使用其他相关的物理信息神经网络是不可行的。我们研究了使用小型培训数据集建模双体螺旋形或三体系统的框架,与同行相比,我们的模型实现了最佳的数据效率和准确性性能。我们还将模型重新组织为建模多体型和多体系统的扩展,展示了我们框架的可重复使用功能。
translated by 谷歌翻译
Here we present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains, involving fluids, rigid solids, and deformable materials interacting with one another. Our framework-which we term "Graph Network-based Simulators" (GNS)-represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing. Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time. Our model was robust to hyperparameter choices across various evaluation metrics: the main determinants of long-term performance were the number of message-passing steps, and mitigating the accumulation of error by corrupting the training data with noise. Our GNS framework advances the state-of-the-art in learned physical simulation, and holds promise for solving a wide range of complex forward and inverse problems.
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
我们提出KeyCLD,这是一个从图像中学习拉格朗日动态的框架。学到的关键点代表图像中的语义标志性,可以直接代表状态动力学。将这种状态解释为笛卡尔坐标,并与明确的自动限制相结合,允许用约束的拉格朗日表达动力学。我们的方法显式地对动能和势能进行了建模,从而允许基于能量的控制。我们是第一个从DM_Control Pendulum,Cartpole和Acrobot环境中的图像中展示Lagrangian动力学学习的人。这是从现实世界图像中学习拉格朗日动力学的迈出的一步,因为以前的文学作品仅适用于在空背景上具有单色形状的简约图像。请参阅我们的项目页面以获取代码和其他结果:https://rdaems.github.io/keycld/
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
最近,对具有神经网络的物理系统建模和计算的兴趣越来越多。在古典力学中,哈密顿系统是一种优雅而紧凑的形式主义,该动力学由一个标量功能,哈密顿量完全决定。解决方案轨迹通常受到约束,以在线性矢量空间的子序列上进化。在这项工作中,我们提出了新的方法,以准确地逼近其解决方案的示例数据信息的约束机械系统的哈密顿功能。我们通过使用明确的谎言组集成商和其他经典方案来关注学习策略中约束的重要性。
translated by 谷歌翻译
Units equivariance (or units covariance) is the exact symmetry that follows from the requirement that relationships among measured quantities of physics relevance must obey self-consistent dimensional scalings. Here, we express this symmetry in terms of a (non-compact) group action, and we employ dimensional analysis and ideas from equivariant machine learning to provide a methodology for exactly units-equivariant machine learning: For any given learning task, we first construct a dimensionless version of its inputs using classic results from dimensional analysis, and then perform inference in the dimensionless space. Our approach can be used to impose units equivariance across a broad range of machine learning methods which are equivariant to rotations and other groups. We discuss the in-sample and out-of-sample prediction accuracy gains one can obtain in contexts like symbolic regression and emulation, where symmetry is important. We illustrate our approach with simple numerical examples involving dynamical systems in physics and ecology.
translated by 谷歌翻译