大多数现代无人监督域适应(UDA)方法源于域对齐,即,学习源和目标功能,使用源标签学习目标域分类器。在半监督域适应(SSDA)中,当学习者可以访问少量目标域标签时,先前的方法遵循UDA理论以使用域对齐进行学习。我们表明SSDA的情况是不同的,并且可以在不需要对齐的情况下学习良好的目标分类器。我们使用自我监督的预测(通过旋转预测)和一致性正则化来实现良好的分开的目标集群,同时在学习低误差目标分类器时。凭借我们预先推价和一致性(PAC)方法,我们在该半监控域适应任务上实现了最新的目标准确性,超过了多个数据集的多个对抗域对齐方法。 PAC,同时使用简单的技术,对DomainNet和Visda-17等大而挑战的SSDA基准进行了非常好的,通常通过相当的边距来表现最近的艺术状态。我们的实验代码可以在https://github.com/venkatesh-saligrama/pac找到
translated by 谷歌翻译
无监督的域适应(UDA)旨在将标记的源分布与未标记的目标分布对齐,以获取域不变预测模型。然而,众所周知的UDA方法的应用在半监督域适应(SSDA)方案中不完全概括,其中来自目标域的少数标记的样本可用。在本文中,我们提出了一种用于半监督域适应(CLDA)的简单对比学习框架,该框架试图在SSDA中弥合标记和未标记的目标分布与源极和未标记的目标分布之间的域间差距之间的域间隙。我们建议采用类明智的对比学学习来降低原始(输入图像)和强大增强的未标记目标图像之间的域间间隙和实例级对比度对准,以最小化域内差异。我们已经凭经验表明,这两个模块相互补充,以实现卓越的性能。在三个众所周知的域适应基准数据集中的实验即Domainnet,Office-Home和Office31展示了我们方法的有效性。 CLDA在所有上述数据集上实现最先进的结果。
translated by 谷歌翻译
无监督域适应(UDA)旨在将知识从相关但不同的良好标记的源域转移到新的未标记的目标域。大多数现有的UDA方法需要访问源数据,因此当数据保密而不相配在隐私问题时,不适用。本文旨在仅使用培训的分类模型来解决现实设置,而不是访问源数据。为了有效地利用适应源模型,我们提出了一种新颖的方法,称为源假设转移(拍摄),其通过将目标数据特征拟合到冻结源分类模块(表示分类假设)来学习目标域的特征提取模块。具体而言,拍摄挖掘出于特征提取模块的信息最大化和自我监督学习,以确保目标特征通过同一假设与看不见的源数据的特征隐式对齐。此外,我们提出了一种新的标签转移策略,它基于预测的置信度(标签信息),然后采用半监督学习来将目标数据分成两个分裂,然后提高目标域中的较为自信预测的准确性。如果通过拍摄获得预测,我们表示标记转移为拍摄++。关于两位数分类和对象识别任务的广泛实验表明,拍摄和射击++实现了与最先进的结果超越或相当的结果,展示了我们对各种视域适应问题的方法的有效性。代码可用于\ url {https://github.com/tim-learn/shot-plus}。
translated by 谷歌翻译
Contemporary domain adaptation methods are very effective at aligning feature distributions of source and target domains without any target supervision. However, we show that these techniques perform poorly when even a few labeled examples are available in the target domain. To address this semi-supervised domain adaptation (SSDA) setting, we propose a novel Minimax Entropy (MME) approach that adversarially optimizes an adaptive few-shot model. Our base model consists of a feature encoding network, followed by a classification layer that computes the features' similarity to estimated prototypes (representatives of each class). Adaptation is achieved by alternately maximizing the conditional entropy of unlabeled target data with respect to the classifier and minimizing it with respect to the feature encoder. We empirically demonstrate the superiority of our method over many baselines, including conventional feature alignment and few-shot methods, setting a new state of the art for SSDA. Our code is available at http://cs-people. bu.edu/keisaito/research/MME.html.
translated by 谷歌翻译
无监督的域适应性(DA)中的主要挑战是减轻源域和目标域之间的域移动。先前的DA工作表明,可以使用借口任务来通过学习域不变表示来减轻此域的转移。但是,实际上,我们发现大多数现有的借口任务对其他已建立的技术无效。因此,我们从理论上分析了如何以及何时可以利用子公司借口任务来协助给定DA问题的目标任务并制定客观的子公司任务适用性标准。基于此标准,我们设计了一个新颖的贴纸干预过程和铸造贴纸分类的过程,作为监督的子公司DA问题,该问题与目标任务无监督的DA同时发生。我们的方法不仅改善了目标任务适应性能,而且还促进了面向隐私的无源DA,即没有并发源目标访问。标准Office-31,Office-Home,Domainnet和Visda基准的实验证明了我们对单源和多源无源DA的优势。我们的方法还补充了现有的无源作品,从而实现了领先的绩效。
translated by 谷歌翻译
半监督域适应(SSDA)是一种具有挑战性的问题,需要克服1)以朝向域的较差的数据和2)分布换档的方法。不幸的是,由于培训数据偏差朝标标样本训练,域适应(DA)和半监督学习(SSL)方法的简单组合通常无法解决这两个目的。在本文中,我们介绍了一种自适应结构学习方法,以规范SSL和DA的合作。灵感来自多视图学习,我们建议的框架由共享特征编码器网络和两个分类器网络组成,用于涉及矛盾的目的。其中,其中一个分类器被应用于组目标特征以提高级别的密度,扩大了鲁棒代表学习的分类集群的间隙。同时,其他分类器作为符号器,试图散射源功能以增强决策边界的平滑度。目标聚类和源扩展的迭代使目标特征成为相应源点的扩张边界内的封闭良好。对于跨域特征对齐和部分标记的数据学习的联合地址,我们应用最大平均差异(MMD)距离最小化和自培训(ST)将矛盾结构投影成共享视图以进行可靠的最终决定。对标准SSDA基准的实验结果包括Domainnet和Office-Home,展示了我们对最先进的方法的方法的准确性和稳健性。
translated by 谷歌翻译
半监督域适应性(SSDA)中的主要挑战之一是标记源和目标样本数量之间的偏差比,导致该模型偏向源域。 SSDA中的最新作品表明,仅将标记的目标样品与源样本对齐可能导致目标域与源域的不完全域对齐。在我们的方法中,为了使两个域对齐,我们利用对比的损失,使用来自两个域的监督样本学习语义上有意义的域不可知特征空间。为了减轻偏斜标签比率引起的挑战,我们通过将其特征表示形式与来自源和目标域的标记样品的特征表示形式进行比较,为未标记的目标样本进行了伪造。此外,为了增加目标域的支持,在训练过程中,这些潜在的嘈杂的伪标签逐渐被逐渐注入标记的目标数据集中。具体而言,我们使用温度缩放的余弦相似性度量将软伪标签分配给未标记的目标样品。此外,我们计算每个未标记样品的软伪标签的指数移动平均值。这些伪标签逐渐注入或删除)(从)基于置信阈值(以补充源和目标分布的比对)(从)中(从)中。最后,我们在标记和伪标记的数据集上使用有监督的对比损失来对齐源和目标分布。使用我们提出的方法,我们在SSDA基准测试中展示了最先进的性能-Office-Home,Domainnet和Office-31。
translated by 谷歌翻译
最近的特征对比学习(FCL)在无监督的代表学习中表现出了有希望的表现。然而,对于近置表示学习,其中标记的数据和未标记数据属于相同的语义空间,FCL不能显示由于在优化期间不涉及类语义而无法占用的压倒性增益。因此,产生的特征不保证由来自标记数据中学到的类重量轻松归类,尽管它们是富有的信息。为了解决这个问题,我们在本文中提出了一种新颖的概率对比学习(PCL),这不仅产生了丰富的功能,而且还强制执行它们以分布在课堂上的原型。具体而言,我们建议在SoftMax之后使用输出概率来执行对比学习而不是FCL中提取的功能。显然,这种方法可以在优化期间利用类语义。此外,我们建议在传统的FCL中删除$ \ ell_ {2} $归一化,并直接使用$ \ ell_ {1} $ - 归一化对比学习的概率。我们提出的PCL简单有效。我们在三个近距离图像分类任务中进行广泛的实验,即无监督域适应,半监督学习和半监督域适应。多个数据集上的结果表明,我们的PCL可以一致地获得相当大的收益并实现所有三个任务的最先进的性能。
translated by 谷歌翻译
大多数无监督的域适应性(UDA)方法假设在模型适应过程中可用标记的源图像可用。但是,由于机密性问题或移动设备上的内存约束,这种假设通常是不可行的。为了解决这些问题,我们提出了一种简单但有效的无源UDA方法,该方法仅使用预训练的源模型和未标记的目标图像。我们的方法通过合并数据增强并以两个一致性目标训练功能生成器来捕获局部不确定性。鼓励功能生成器从头部分类器的决策边界学习一致的视觉功能。受到自我监督学习的启发,我们的方法促进了预测空间和特征空间之间的空间间比对,同时在特征空间内结合了空间的一致性,以减少源域和目标域之间的域间隙。我们还考虑了认知不确定性,以提高模型适应性能。对流行的UDA基准测试的广泛实验表明,我们的方法的性能是可比甚至优于香草UDA方法,而无需使用源图像或网络修改。
translated by 谷歌翻译
实用的现实世界数据集具有丰富的类别,为无监督的领域适应带来了新的挑战,例如小型阶层歧视性,仅依靠域不变性的现有方法不能很好地处理。在这项工作中,我们提出了MEMSAC,该MEMSAC利用了跨源和目标域的样本级别相似性​​,以实现判别性转移,以​​及扩展到大量类别的体系结构。为此,我们首先引入一种内存增强方法,以在标记的源和未标记的目标域实例之间有效提取成对的相似性关系,该实例适用于处理任意数量的类。接下来,我们建议和理论上证明对比损失的新型变体,以促进阶层内跨域样本之间的局部一致性,同时在类别之间执行分离,从而保留从源到目标的歧视性转移。我们验证了MEMSAC的优势,比以前的最先进的最先进的转移任务有了显着改进。我们还提供了深入的分析和对MEMSAC有效性的见解。
translated by 谷歌翻译
Deep learning has produced state-of-the-art results for a variety of tasks. While such approaches for supervised learning have performed well, they assume that training and testing data are drawn from the same distribution, which may not always be the case. As a complement to this challenge, single-source unsupervised domain adaptation can handle situations where a network is trained on labeled data from a source domain and unlabeled data from a related but different target domain with the goal of performing well at test-time on the target domain. Many single-source and typically homogeneous unsupervised deep domain adaptation approaches have thus been developed, combining the powerful, hierarchical representations from deep learning with domain adaptation to reduce reliance on potentially-costly target data labels. This survey will compare these approaches by examining alternative methods, the unique and common elements, results, and theoretical insights. We follow this with a look at application areas and open research directions.
translated by 谷歌翻译
半监督域适应(SSDA)是将学习者调整到新域,只有一小组标记的数据集在源域上给出时,只有一小组标记的样本。在本文中,我们提出了一种基于对的SSDA方法,使用用样品对的自蒸馏来适应靶域的模型。每个样本对由来自标记数据集(即源或标记为目标)的教师样本以及来自未标记数据集的学生样本(即,未标记的目标)组成。我们的方法通过在教师和学生之间传输中间样式来生成助手功能,然后通过最小化学生和助手之间的输出差异来培训模型。在培训期间,助手逐渐弥合了两个域之间的差异,从而让学生容易地从老师那里学习。标准基准测试的实验评估表明,我们的方法有效地减少了域间和域内的差异,从而实现了对最近的方法的显着改进。
translated by 谷歌翻译
Recent reports suggest that a generic supervised deep CNN model trained on a large-scale dataset reduces, but does not remove, dataset bias. Fine-tuning deep models in a new domain can require a significant amount of labeled data, which for many applications is simply not available. We propose a new CNN architecture to exploit unlabeled and sparsely labeled target domain data. Our approach simultaneously optimizes for domain invariance to facilitate domain transfer and uses a soft label distribution matching loss to transfer information between tasks. Our proposed adaptation method offers empirical performance which exceeds previously published results on two standard benchmark visual domain adaptation tasks, evaluated across supervised and semi-supervised adaptation settings.
translated by 谷歌翻译
无监督域适应(UDA)旨在将知识从标记的源域传输到未标记的目标域。传统上,基于子空间的方法为此问题形成了一类重要的解决方案。尽管他们的数学优雅和易腐烂性,但这些方法通常被发现在产生具有复杂的现实世界数据集的领域不变的功能时无效。由于近期具有深度网络的代表学习的最新进展,本文重新访问了UDA的子空间对齐,提出了一种新的适应算法,始终如一地导致改进的泛化。与现有的基于对抗培训的DA方法相比,我们的方法隔离了特征学习和分配对准步骤,并利用主要辅助优化策略来有效地平衡域不契约的目标和模型保真度。在提供目标数据和计算要求的显着降低的同时,基于子空间的DA竞争性,有时甚至优于几种标准UDA基准测试的最先进的方法。此外,子空间对准导致本质上定期的模型,即使在具有挑战性的部分DA设置中,也表现出强大的泛化。最后,我们的UDA框架的设计本身支持对测试时间的新目标域的逐步适应,而无需从头开始重新检测模型。总之,由强大的特征学习者和有效的优化策略提供支持,我们将基于子空间的DA建立为可视识别的高效方法。
translated by 谷歌翻译
增强对未标记目标数据的模型预测置信度是无监督域适应(UDA)的重要目标。在本文中,我们探讨了关于倒数第二个线性分类层的输入特征的对抗性训练。我们表明,这种策略比以前的作品所使用的对对抗性图像或中间特征的对抗训练更有效,并且与提高预测置信度的目的更加相关。此外,通过在域适应中通常使用激活归一化以减少域间隙,我们得出了两个变体,并系统地分析了归一化对对抗性训练的影响。这在理论上和通过对实际适应任务的经验分析都进行了说明。在标准设置和无源DATA设置下,对流行的UDA基准测试进行了广泛的实验。结果证明了我们的方法可以在以前的艺术中取得最佳分数。
translated by 谷歌翻译
Source-free domain adaptation aims to adapt a source model trained on fully-labeled source domain data to a target domain with unlabeled target domain data. Source data is assumed inaccessible due to proprietary or privacy reasons. Existing works use the source model to pseudolabel target data, but the pseudolabels are unreliable due to data distribution shift between source and target domain. In this work, we propose to leverage an ImageNet pre-trained feature extractor in a new co-learning framework to improve target pseudolabel quality for finetuning the source model. Benefits of the ImageNet feature extractor include that it is not source-biased and it provides an alternate view of features and classification decisions different from the source model. Such pre-trained feature extractors are also publicly available, which allows us to readily leverage modern network architectures that have strong representation learning ability. After co-learning, we sharpen predictions of non-pseudolabeled samples by entropy minimization. Evaluation on 3 benchmark datasets show that our proposed method can outperform existing source-free domain adaptation methods, as well as unsupervised domain adaptation methods which assume joint access to source and target data.
translated by 谷歌翻译
无监督的域适应(UDA)处理在标记数据仅适用于不同的源域时对未标记的目标域数据进行分类的问题。不幸的是,由于源数据和目标数据之间的域间隙,常用的分类方法无法充分实现这项任务。在本文中,我们提出了一种新颖的不确定性感知域适应设置,将不确定性模拟在特征空间中的多变量高斯分布。我们表明,我们提出的不确定性测量与其他常见的不确定性量化相关,并涉及平滑分类器的决策边界,从而提高泛化能力。我们在挑战UDA数据集中评估我们提出的管道,实现最先进的结果。我们的方法代码可用于https://gitlab.com/tringwald/cvp。
translated by 谷歌翻译
利用源区和目标域之间的张建空间是最近无监督的域适应方法之一。然而,标签的平衡崩溃问题,源标签在邻居实例的预测中占据了目标标签的主导地位,从未得到解决。在本文中,我们提出了一个实例 - 方面的最小策略,最小化了张开的空间中的高不确定性实例的熵,以解决它。我们通过最低限度问题的解决方案将大亨空间分为两个子空间:对比空间和共识空间。在对比的空间中,通过约束实例来减轻域间差异,以具有对比度视图和标签,并且共识空间减少了域内类别之间的混淆。我们的方法的有效性在公共基准上证明,包括办公室-31,办公室和visda-c,这实现了最先进的表演。我们进一步表明,我们的方法在PACS上表明了当前最先进的方法,这表示我们的实例 - 方面的方法适用于多源域适应。
translated by 谷歌翻译
Generalization capability to unseen domains is crucial for machine learning models when deploying to real-world conditions. We investigate the challenging problem of domain generalization, i.e., training a model on multi-domain source data such that it can directly generalize to target domains with unknown statistics. We adopt a model-agnostic learning paradigm with gradient-based meta-train and meta-test procedures to expose the optimization to domain shift. Further, we introduce two complementary losses which explicitly regularize the semantic structure of the feature space. Globally, we align a derived soft confusion matrix to preserve general knowledge about inter-class relationships. Locally, we promote domainindependent class-specific cohesion and separation of sample features with a metric-learning component. The effectiveness of our method is demonstrated with new state-of-the-art results on two common object recognition benchmarks. Our method also shows consistent improvement on a medical image segmentation task.
translated by 谷歌翻译
域适应(DA)旨在将知识从标签富裕但异构的域转移到标签恐慌域,这减轻了标签努力并吸引了相当大的关注。与以前的方法不同,重点是学习域中的特征表示,一些最近的方法存在通用半监督学习(SSL)技术,直接将它们应用于DA任务,甚至实现竞争性能。最受欢迎的SSL技术之一是伪标记,可通过标记数据训练的分类器为每个未标记数据分配伪标签。但是,它忽略了DA问题的分布偏移,并且不可避免地偏置为源数据。要解决此问题,我们提出了一个名为辅助目标域导向的分类器(ATDOC)的新伪标签框架。 ATDOC通过为目标数据引入辅助分类器来缓解分类器偏置,以提高伪标签的质量。具体地,我们使用内存机制并开发两种类型的非参数分类器,即最近的质心分类器和邻域聚合,而不引入任何其他网络参数。尽管在伪分类目标中具有简单性,但具有邻域聚集的ATDOC显着优于域对齐技术和现有的SSL技术,以及甚至瘢痕标记的SSL任务。
translated by 谷歌翻译