利用源区和目标域之间的张建空间是最近无监督的域适应方法之一。然而,标签的平衡崩溃问题,源标签在邻居实例的预测中占据了目标标签的主导地位,从未得到解决。在本文中,我们提出了一个实例 - 方面的最小策略,最小化了张开的空间中的高不确定性实例的熵,以解决它。我们通过最低限度问题的解决方案将大亨空间分为两个子空间:对比空间和共识空间。在对比的空间中,通过约束实例来减轻域间差异,以具有对比度视图和标签,并且共识空间减少了域内类别之间的混淆。我们的方法的有效性在公共基准上证明,包括办公室-31,办公室和visda-c,这实现了最先进的表演。我们进一步表明,我们的方法在PACS上表明了当前最先进的方法,这表示我们的实例 - 方面的方法适用于多源域适应。
translated by 谷歌翻译
无监督的域适应(UDA)旨在将标记的源分布与未标记的目标分布对齐,以获取域不变预测模型。然而,众所周知的UDA方法的应用在半监督域适应(SSDA)方案中不完全概括,其中来自目标域的少数标记的样本可用。在本文中,我们提出了一种用于半监督域适应(CLDA)的简单对比学习框架,该框架试图在SSDA中弥合标记和未标记的目标分布与源极和未标记的目标分布之间的域间差距之间的域间隙。我们建议采用类明智的对比学学习来降低原始(输入图像)和强大增强的未标记目标图像之间的域间间隙和实例级对比度对准,以最小化域内差异。我们已经凭经验表明,这两个模块相互补充,以实现卓越的性能。在三个众所周知的域适应基准数据集中的实验即Domainnet,Office-Home和Office31展示了我们方法的有效性。 CLDA在所有上述数据集上实现最先进的结果。
translated by 谷歌翻译
无监督域适应(UDA)旨在将知识从相关但不同的良好标记的源域转移到新的未标记的目标域。大多数现有的UDA方法需要访问源数据,因此当数据保密而不相配在隐私问题时,不适用。本文旨在仅使用培训的分类模型来解决现实设置,而不是访问源数据。为了有效地利用适应源模型,我们提出了一种新颖的方法,称为源假设转移(拍摄),其通过将目标数据特征拟合到冻结源分类模块(表示分类假设)来学习目标域的特征提取模块。具体而言,拍摄挖掘出于特征提取模块的信息最大化和自我监督学习,以确保目标特征通过同一假设与看不见的源数据的特征隐式对齐。此外,我们提出了一种新的标签转移策略,它基于预测的置信度(标签信息),然后采用半监督学习来将目标数据分成两个分裂,然后提高目标域中的较为自信预测的准确性。如果通过拍摄获得预测,我们表示标记转移为拍摄++。关于两位数分类和对象识别任务的广泛实验表明,拍摄和射击++实现了与最先进的结果超越或相当的结果,展示了我们对各种视域适应问题的方法的有效性。代码可用于\ url {https://github.com/tim-learn/shot-plus}。
translated by 谷歌翻译
自我监督的学习(SSL)最近成为特征学习方法中的最爱。因此,它可以吸引域适应方法来考虑结合SSL。直觉是强制执行实例级别一致性,使得预测器在域中变得不变。但是,域适应制度中的大多数现有SSL方法通常被视为独立的辅助组件,使域自适应的签名无人看管。实际上,域间隙消失的最佳区域和SSL PERUSES的实例级别约束可能根本不一致。从这一点来看,我们向一个特定的范式的自我监督学习量身定制,用于域适应,即可转让的对比学习(TCL),这与SSL和所需的跨域转移性相一致地联系起来。我们发现对比学习本质上是一个合适的域适应候选者,因为它的实例不变性假设可以方便地促进由域适应任务青睐的跨域类级不变性。基于特定的记忆库结构和伪标签策略,TCL然后通过清洁和新的对比损失来惩罚源头和靶之间的跨域内域差异。免费午餐是由于纳入对比学习,TCL依赖于移动平均的关键编码器,自然地实现了用于目标数据的伪标签的暂停标签,这避免了无额外的成本。因此,TCL有效地减少了跨域间隙。通过对基准(Office-Home,Visda-2017,Diamet-Five,PACS和Domainnet)进行广泛的实验,用于单源和多源域适配任务,TCL已经证明了最先进的性能。
translated by 谷歌翻译
大多数无监督的域适应性(UDA)方法假设在模型适应过程中可用标记的源图像可用。但是,由于机密性问题或移动设备上的内存约束,这种假设通常是不可行的。为了解决这些问题,我们提出了一种简单但有效的无源UDA方法,该方法仅使用预训练的源模型和未标记的目标图像。我们的方法通过合并数据增强并以两个一致性目标训练功能生成器来捕获局部不确定性。鼓励功能生成器从头部分类器的决策边界学习一致的视觉功能。受到自我监督学习的启发,我们的方法促进了预测空间和特征空间之间的空间间比对,同时在特征空间内结合了空间的一致性,以减少源域和目标域之间的域间隙。我们还考虑了认知不确定性,以提高模型适应性能。对流行的UDA基准测试的广泛实验表明,我们的方法的性能是可比甚至优于香草UDA方法,而无需使用源图像或网络修改。
translated by 谷歌翻译
半监督域适应性(SSDA)中的主要挑战之一是标记源和目标样本数量之间的偏差比,导致该模型偏向源域。 SSDA中的最新作品表明,仅将标记的目标样品与源样本对齐可能导致目标域与源域的不完全域对齐。在我们的方法中,为了使两个域对齐,我们利用对比的损失,使用来自两个域的监督样本学习语义上有意义的域不可知特征空间。为了减轻偏斜标签比率引起的挑战,我们通过将其特征表示形式与来自源和目标域的标记样品的特征表示形式进行比较,为未标记的目标样本进行了伪造。此外,为了增加目标域的支持,在训练过程中,这些潜在的嘈杂的伪标签逐渐被逐渐注入标记的目标数据集中。具体而言,我们使用温度缩放的余弦相似性度量将软伪标签分配给未标记的目标样品。此外,我们计算每个未标记样品的软伪标签的指数移动平均值。这些伪标签逐渐注入或删除)(从)基于置信阈值(以补充源和目标分布的比对)(从)中(从)中。最后,我们在标记和伪标记的数据集上使用有监督的对比损失来对齐源和目标分布。使用我们提出的方法,我们在SSDA基准测试中展示了最先进的性能-Office-Home,Domainnet和Office-31。
translated by 谷歌翻译
We propose a novel unsupervised domain adaptation framework based on domain-specific batch normalization in deep neural networks. We aim to adapt to both domains by specializing batch normalization layers in convolutional neural networks while allowing them to share all other model parameters, which is realized by a twostage algorithm. In the first stage, we estimate pseudolabels for the examples in the target domain using an external unsupervised domain adaptation algorithm-for example, MSTN [27] or CPUA [14]-integrating the proposed domain-specific batch normalization. The second stage learns the final models using a multi-task classification loss for the source and target domains. Note that the two domains have separate batch normalization layers in both stages. Our framework can be easily incorporated into the domain adaptation techniques based on deep neural networks with batch normalization layers. We also present that our approach can be extended to the problem with multiple source domains. The proposed algorithm is evaluated on multiple benchmark datasets and achieves the state-of-theart accuracy in the standard setting and the multi-source domain adaption scenario.
translated by 谷歌翻译
Unsupervised Domain Adaptation (UDA) has emerged as a powerful solution for the domain shift problem via transferring the knowledge from a labeled source domain to a shifted unlabeled target domain. Despite the prevalence of UDA for visual applications, it remains relatively less explored for time-series applications. In this work, we propose a novel lightweight contrastive domain adaptation framework called CoTMix for time-series data. Unlike existing approaches that either use statistical distances or adversarial techniques, we leverage contrastive learning solely to mitigate the distribution shift across the different domains. Specifically, we propose a novel temporal mixup strategy to generate two intermediate augmented views for the source and target domains. Subsequently, we leverage contrastive learning to maximize the similarity between each domain and its corresponding augmented view. The generated views consider the temporal dynamics of time-series data during the adaptation process while inheriting the semantics among the two domains. Hence, we gradually push both domains towards a common intermediate space, mitigating the distribution shift across them. Extensive experiments conducted on four real-world time-series datasets show that our approach can significantly outperform all state-of-the-art UDA methods. The implementation code of CoTMix is available at \href{https://github.com/emadeldeen24/CoTMix}{github.com/emadeldeen24/CoTMix}.
translated by 谷歌翻译
最近的特征对比学习(FCL)在无监督的代表学习中表现出了有希望的表现。然而,对于近置表示学习,其中标记的数据和未标记数据属于相同的语义空间,FCL不能显示由于在优化期间不涉及类语义而无法占用的压倒性增益。因此,产生的特征不保证由来自标记数据中学到的类重量轻松归类,尽管它们是富有的信息。为了解决这个问题,我们在本文中提出了一种新颖的概率对比学习(PCL),这不仅产生了丰富的功能,而且还强制执行它们以分布在课堂上的原型。具体而言,我们建议在SoftMax之后使用输出概率来执行对比学习而不是FCL中提取的功能。显然,这种方法可以在优化期间利用类语义。此外,我们建议在传统的FCL中删除$ \ ell_ {2} $归一化,并直接使用$ \ ell_ {1} $ - 归一化对比学习的概率。我们提出的PCL简单有效。我们在三个近距离图像分类任务中进行广泛的实验,即无监督域适应,半监督学习和半监督域适应。多个数据集上的结果表明,我们的PCL可以一致地获得相当大的收益并实现所有三个任务的最先进的性能。
translated by 谷歌翻译
域适应(DA)旨在将知识从标签富裕但异构的域转移到标签恐慌域,这减轻了标签努力并吸引了相当大的关注。与以前的方法不同,重点是学习域中的特征表示,一些最近的方法存在通用半监督学习(SSL)技术,直接将它们应用于DA任务,甚至实现竞争性能。最受欢迎的SSL技术之一是伪标记,可通过标记数据训练的分类器为每个未标记数据分配伪标签。但是,它忽略了DA问题的分布偏移,并且不可避免地偏置为源数据。要解决此问题,我们提出了一个名为辅助目标域导向的分类器(ATDOC)的新伪标签框架。 ATDOC通过为目标数据引入辅助分类器来缓解分类器偏置,以提高伪标签的质量。具体地,我们使用内存机制并开发两种类型的非参数分类器,即最近的质心分类器和邻域聚合,而不引入任何其他网络参数。尽管在伪分类目标中具有简单性,但具有邻域聚集的ATDOC显着优于域对齐技术和现有的SSL技术,以及甚至瘢痕标记的SSL任务。
translated by 谷歌翻译
无监督的域适应性(DA)中的主要挑战是减轻源域和目标域之间的域移动。先前的DA工作表明,可以使用借口任务来通过学习域不变表示来减轻此域的转移。但是,实际上,我们发现大多数现有的借口任务对其他已建立的技术无效。因此,我们从理论上分析了如何以及何时可以利用子公司借口任务来协助给定DA问题的目标任务并制定客观的子公司任务适用性标准。基于此标准,我们设计了一个新颖的贴纸干预过程和铸造贴纸分类的过程,作为监督的子公司DA问题,该问题与目标任务无监督的DA同时发生。我们的方法不仅改善了目标任务适应性能,而且还促进了面向隐私的无源DA,即没有并发源目标访问。标准Office-31,Office-Home,Domainnet和Visda基准的实验证明了我们对单源和多源无源DA的优势。我们的方法还补充了现有的无源作品,从而实现了领先的绩效。
translated by 谷歌翻译
半监督域适应(SSDA)是一种具有挑战性的问题,需要克服1)以朝向域的较差的数据和2)分布换档的方法。不幸的是,由于培训数据偏差朝标标样本训练,域适应(DA)和半监督学习(SSL)方法的简单组合通常无法解决这两个目的。在本文中,我们介绍了一种自适应结构学习方法,以规范SSL和DA的合作。灵感来自多视图学习,我们建议的框架由共享特征编码器网络和两个分类器网络组成,用于涉及矛盾的目的。其中,其中一个分类器被应用于组目标特征以提高级别的密度,扩大了鲁棒代表学习的分类集群的间隙。同时,其他分类器作为符号器,试图散射源功能以增强决策边界的平滑度。目标聚类和源扩展的迭代使目标特征成为相应源点的扩张边界内的封闭良好。对于跨域特征对齐和部分标记的数据学习的联合地址,我们应用最大平均差异(MMD)距离最小化和自培训(ST)将矛盾结构投影成共享视图以进行可靠的最终决定。对标准SSDA基准的实验结果包括Domainnet和Office-Home,展示了我们对最先进的方法的方法的准确性和稳健性。
translated by 谷歌翻译
关于无监督的域适应性(UDA)的广泛研究已将有限的实验数据集深入学习到现实世界中无约束的领域。大多数UDA接近通用嵌入空间中的对齐功能,并将共享分类器应用于目标预测。但是,由于当域差异很大时可能不存在完全排列的特征空间,因此这些方法受到了两个局限性。首先,由于缺乏目标标签监督,强制域的比对会恶化目标域的可区分性。其次,源监督分类器不可避免地偏向源数据,因此它在目标域中的表现可能不佳。为了减轻这些问题,我们建议在两个集中在不同领域的空间中同时进行特征对齐,并为每个空间创建一个针对该域的面向域的分类器。具体而言,我们设计了一个面向域的变压器(DOT),该变压器(DOT)具有两个单独的分类令牌,以学习不同的面向域的表示形式和两个分类器,以保持域的可区分性。理论保证的基于对比度的对齐和源指导的伪标签细化策略被用来探索域名和特定信息。全面的实验验证了我们的方法在几个基准上实现了最先进的方法。
translated by 谷歌翻译
无源域的适应(SFDA)旨在将预先培训的源模型调整到未标记的目标域而无需访问标记良好的源数据的情况下,由于数据隐私,安全性和传输问题,这是一个更实用的设置。为了弥补缺乏源数据,大多数现有方法引入了基于特征原型的伪标记策略,以实现自我训练模型的适应性。但是,特征原型是通过基于实例级预测的特征群集获得的,该特征群集是偏见的,并且倾向于导致嘈杂的标签,因为源和目标之间的视觉域间隙通常不同。此外,我们发现单中心特征原型可能无效地表示每个类别并引入负转移,尤其是对于这些硬转移数据。为了解决这些问题,我们为SFDA任务提供了一般类平衡的多中心动态原型(BMD)策略。具体而言,对于每个目标类别,我们首先引入全球类间平衡抽样策略,以汇总潜在的代表性目标样本。然后,我们设计了一类多中心聚类策略,以实现更健壮和代表性的原型生成。与在固定培训期更新伪标签的现有策略相反,我们进一步引入了动态伪标签策略,以在模型适应过程中结合网络更新信息。广泛的实验表明,所提出的模型不可替代的BMD策略显着改善了代表性的SFDA方法,以产生新的最新结果。该代码可在https://github.com/ispc-lab/bmd上找到。
translated by 谷歌翻译
通过从完全标记的源域中利用数据,无监督域适应(UDA)通过显式差异最小化数据分布或对抗学习来提高未标记的目标域上的分类性能。作为增强,通过利用模型预测来加强目标特征识别期间涉及类别对齐。但是,在目标域上的错误类别预测中产生的伪标签不准确以及由源域的过度录制引起的分发偏差存在未探明的问题。在本文中,我们提出了一种模型 - 不可知的两阶段学习框架,这大大减少了使用软伪标签策略的缺陷模型预测,并避免了课程学习策略的源域上的过度拟合。从理论上讲,它成功降低了目标域上预期误差的上限的综合风险。在第一阶段,我们用分布对齐的UDA方法训练一个模型,以获得具有相当高的置位目标域上的软语义标签。为了避免在源域上的过度拟合,在第二阶段,我们提出了一种课程学习策略,以自适应地控制来自两个域的损失之间的加权,以便训练阶段的焦点从源分布逐渐移位到目标分布,以预测信心提升了目标分布在目标领域。对两个知名基准数据集的广泛实验验证了我们提出框架促进促进顶级UDA算法的性能的普遍效果,并展示其一致的卓越性能。
translated by 谷歌翻译
半监督域适应(SSDA)是将学习者调整到新域,只有一小组标记的数据集在源域上给出时,只有一小组标记的样本。在本文中,我们提出了一种基于对的SSDA方法,使用用样品对的自蒸馏来适应靶域的模型。每个样本对由来自标记数据集(即源或标记为目标)的教师样本以及来自未标记数据集的学生样本(即,未标记的目标)组成。我们的方法通过在教师和学生之间传输中间样式来生成助手功能,然后通过最小化学生和助手之间的输出差异来培训模型。在培训期间,助手逐渐弥合了两个域之间的差异,从而让学生容易地从老师那里学习。标准基准测试的实验评估表明,我们的方法有效地减少了域间和域内的差异,从而实现了对最近的方法的显着改进。
translated by 谷歌翻译
大多数现代无人监督域适应(UDA)方法源于域对齐,即,学习源和目标功能,使用源标签学习目标域分类器。在半监督域适应(SSDA)中,当学习者可以访问少量目标域标签时,先前的方法遵循UDA理论以使用域对齐进行学习。我们表明SSDA的情况是不同的,并且可以在不需要对齐的情况下学习良好的目标分类器。我们使用自我监督的预测(通过旋转预测)和一致性正则化来实现良好的分开的目标集群,同时在学习低误差目标分类器时。凭借我们预先推价和一致性(PAC)方法,我们在该半监控域适应任务上实现了最新的目标准确性,超过了多个数据集的多个对抗域对齐方法。 PAC,同时使用简单的技术,对DomainNet和Visda-17等大而挑战的SSDA基准进行了非常好的,通常通过相当的边距来表现最近的艺术状态。我们的实验代码可以在https://github.com/venkatesh-saligrama/pac找到
translated by 谷歌翻译
关于无监督域适应性(UDA)的大多数现有研究都认为每个域的训练样本都带有域标签(例如绘画,照片)。假定每个域中的样品都遵循相同的分布,并利用域标签通过特征对齐来学习域不变特征。但是,这样的假设通常并不成立 - 通常存在许多较细粒的领域(例如,已经开发出了数十种现代绘画样式,每种绘画样式与经典风格的范围都有很大不同)。因此,在每个人工定义和粗粒结构域之间强迫特征分布对齐可能是无效的。在本文中,我们从完全不同的角度解决了单源和多源UDA,即将每个实例视为一个良好的域。因此,跨域的特征对齐是冗余。相反,我们建议执行动态实例域的适应性(DIDA)。具体而言,开发了具有自适应卷积内核的动态神经网络,以生成实例自适应残差,以使域 - 无知的深度特征适应每个单独的实例。这使得共享分类器可以同时应用于源域数据,而无需依赖任何域注释。此外,我们没有施加复杂的特征对准损失,而是仅使用标记的源和伪标记为目标数据的跨透镜损失采用简单的半监督学习范式。我们的模型被称为DIDA-NET,可以在几种常用的单源和多源UDA数据集上实现最先进的性能,包括数字,办公室房屋,域名,域名,Digit-Five和PAC。
translated by 谷歌翻译
域的适应性旨在使标记的源域和未标记的目标域对齐,并且大多数现有方法都认为源数据是可访问的。不幸的是,这种范式引起了数据隐私和安全性的关注。最近的研究试图通过无源设置来消除这些问题,该设置将源训练的模型适应目标域而不暴露源数据。但是,由于对源模型的对抗性攻击,无源范式仍然有数据泄漏的风险。因此,提出了黑框设置,其中只能利用源模型的输出。在本文中,我们同时介绍了无源的适应和黑盒适应性,提出了一种新的方法,即来自频率混合和相互学习(FMML)的“更好的目标表示”。具体而言,我们引入了一种新的数据增强技术作为频率混音,该技术突出了插值中与任务相关的对象,从而增强了目标模型的类符合性和线性行为。此外,我们引入了一种称为相互学习的网络正则化方法,以介绍域的适应问题。它通过自我知识蒸馏传输目标模型内部的知识,从而通过学习多尺度目标表示来减轻对源域的过度拟合。广泛的实验表明,我们的方法在两种设置下都可以在几个基准数据集上实现最新性能。
translated by 谷歌翻译
与标准闭合域的适应任务相反,部分域适应设置通过放松相同的标签集假设来迎合现实情况。但是,源标签集集成了目标标签集的事实,因此引入了一些额外的障碍,因为私人源类别样本的培训阻止了相关的知识转移并误导了分类过程。为了减轻这些问题,我们设计了一种机制,用于策略选择高度自信的目标样本,这对于估算班级的体重所必需的必不可少的机制。此外,我们通过将实现紧凑型和不同类别分布的过程与对抗性目标结合过程来捕获类歧视和域的不变特征。对众多跨域分类任务的实验发现证明了所提出的技术具有比现有方法具有卓越和可比精度的潜力。
translated by 谷歌翻译