在线二手匹配是在线算法中的一个基本问题。目的是匹配两组顶点,以最大化边缘权重的总和,在该顶点中,对于一组顶点,每个顶点及其相应的边缘重量以序列形式出现。当前,在实际的建议系统或搜索引擎中,权重是由用户的深度表示与项目深度表示之间的内部产品决定的。标准的在线匹配需要支付$ nd $的时间来线性扫描所有$ n $项目,计算重量(假设每个表示向量都有长度$ d $),然后根据权重决定匹配。但是,实际上,$ n $可能很大,例如在在线电子商务平台中。因此,改善计算权重的时间是一个实践意义的问题。在这项工作中,我们为大约计算权重的理论基础提供了基础。我们表明,借助我们提出的随机数据结构,可以在额定时间内计算权重,同时仍保留匹配算法的竞争比率。
translated by 谷歌翻译
内核密度估计(KDE)在机器学习中脱颖而出。问题是按以下方式定义的:给定的内核函数$ f(x,y)$和一组点$ \ {x_1,x_2,x_2,\ cdots,x_n \} \ subset \ subset \ mathbb {r}^d $,我们想计算$ \ frac {1} {n} \ sum_ {i = 1}^{n} f(x_i,y)$ for任何查询点$ y \ in \ mathbb {r}^d $。最近,将数据结构用于有效KDE的趋势越来越大。但是,提出的KDE数据结构集中在静态设置上。 KDE数据结构在动态变化的数据分布上的鲁棒性没有解决。在这项工作中,我们专注于具有对对抗性查询的KDE数据结构的动态维护。特别是,我们提供了KDE数据结构的理论框架。在我们的框架中,KDE数据结构仅需要次级空间。此外,我们的数据结构支持sublinear时间中数据集的动态更新。此外,我们可以在均匀时间内使用潜在的对手进行自适应查询。
translated by 谷歌翻译
条件梯度方法(CGM)广泛用于现代机器学习。 CGM的整体运行时间通常由两部分组成:迭代次数和每次迭代的成本。大多数努力侧重于减少迭代的数量,作为减少整体运行时间的手段。在这项工作中,我们专注于改善CGM的迭代成本。大多数CGM中的瓶颈步骤是最大内部产品搜索(MAXIP),需要在参数上线性扫描。在实践中,发现近似的maxip数据结构是有用的启发式。然而,理论上,关于近似的MAIPIP数据结构和CGM的组合,没有任何内容。在这项工作中,我们通过提供一个正式的框架来肯定地回答这个问题,以将临时敏感散列类型近似maxip数据结构与CGM算法组合起来。结果,我们展示了第一算法,其中每个迭代的成本在参数的数量中,对于许多基本优化算法,例如Frank-Wolfe,emergorithm和政策梯度。
translated by 谷歌翻译
K-means++ is an important algorithm to choose initial cluster centers for the k-means clustering algorithm. In this work, we present a new algorithm that can solve the $k$-means++ problem with near optimal running time. Given $n$ data points in $\mathbb{R}^d$, the current state-of-the-art algorithm runs in $\widetilde{O}(k )$ iterations, and each iteration takes $\widetilde{O}(nd k)$ time. The overall running time is thus $\widetilde{O}(n d k^2)$. We propose a new algorithm \textsc{FastKmeans++} that only takes in $\widetilde{O}(nd + nk^2)$ time, in total.
translated by 谷歌翻译
深度学习的成功以巨大的计算和能源成本,而训练大规模过度参数的神经网络的可伸缩性正成为AI进步的真正障碍。尽管传统反向传播通过梯度不错的传统反向传播的流行和低成本,但在理论和实践中,SGD在非凸面设置中具有高度的收敛速度。为了减轻这一成本,最近的工作提议采用替代性(牛顿型)培训方法,但收敛速度更快,尽管其每题成本更高。对于具有$ m = \ mathrm {poly}(n)$参数的典型神经网络,$ n $ datapoints in $ \ mathbb {r}^d $ of $ n $ datapoints的输入批次, Weinstein,ITCS'2021]需要$ \ sim mnd + n^3 $每次迭代。在本文中,我们提出了一种新颖的培训方法,它仅需要$ m^{1- \ alpha} n d + n^3 $摊销时间在同一过度叠加机制中,其中$ \ alpha \ in(0.01,1)$是某些固定常数。此方法依赖于神经网络的新替代视图,作为一组二进制搜索树,每个迭代都对应于修改树中节点的一小部分。我们认为,这种观点将在DNN的设计和分析中进一步应用。
translated by 谷歌翻译
我们研究动态算法,以便在$ N $插入和删除流中最大化单调子模块功能的问题。我们显示任何维护$(0.5+ epsilon)$ - 在基数约束下的近似解决方案的算法,对于任何常数$ \ epsilon> 0 $,必须具有$ \ mathit {polynomial} $的摊销查询复杂性$ n $。此外,需要线性摊销查询复杂性,以维持0.584美元 - 批量的解决方案。这与近期[LMNF + 20,MON20]的最近动态算法相比,达到$(0.5- \ epsilon)$ - 近似值,与$ \ mathsf {poly} \ log(n)$摊销查询复杂性。在正面,当流是仅插入的时候,我们在基数约束下的问题和近似的Matroid约束下提供有效的算法,近似保证$ 1-1 / e-\ epsilon $和摊销查询复杂性$ \ smash {o (\ log(k / \ epsilon)/ \ epsilon ^ 2)} $和$ \ smash {k ^ {\ tilde {o}(1 / \ epsilon ^ 2)} \ log n} $,其中$ k $表示基数参数或Matroid的等级。
translated by 谷歌翻译
In this paper, we propose Adam-Hash: an adaptive and dynamic multi-resolution hashing data-structure for fast pairwise summation estimation. Given a data-set $X \subset \mathbb{R}^d$, a binary function $f:\mathbb{R}^d\times \mathbb{R}^d\to \mathbb{R}$, and a point $y \in \mathbb{R}^d$, the Pairwise Summation Estimate $\mathrm{PSE}_X(y) := \frac{1}{|X|} \sum_{x \in X} f(x,y)$. For any given data-set $X$, we need to design a data-structure such that given any query point $y \in \mathbb{R}^d$, the data-structure approximately estimates $\mathrm{PSE}_X(y)$ in time that is sub-linear in $|X|$. Prior works on this problem have focused exclusively on the case where the data-set is static, and the queries are independent. In this paper, we design a hashing-based PSE data-structure which works for the more practical \textit{dynamic} setting in which insertions, deletions, and replacements of points are allowed. Moreover, our proposed Adam-Hash is also robust to adaptive PSE queries, where an adversary can choose query $q_j \in \mathbb{R}^d$ depending on the output from previous queries $q_1, q_2, \dots, q_{j-1}$.
translated by 谷歌翻译
本文展示了如何适应$ k $ -MEANS问题的几种简单和经典的基于采样的算法,以使用离群值设置。最近,Bhaskara等人。 (Neurips 2019)展示了如何将古典$ K $ -MEANS ++算法适应与异常值的设置。但是,他们的算法需要输出$ o(\ log(k)\ cdot z)$ outiers,其中$ z $是true Outliers的数量,以匹配$ o(\ log k)$ - 近似值的$ k的近似保证$ -Means ++。在本文中,我们以他们的想法为基础,并展示了如何适应几个顺序和分布式的$ k $ - 均值算法,但使用离群值来设置,但具有更强的理论保证:我们的算法输出$(1+ \ VAREPSILON)z $ OUTLIERS Z $ OUTLIERS在实现$ o(1 / \ varepsilon)$ - 近似目标函数的同时。在顺序世界中,我们通过改编Lattanzi和Sohler的最新算法来实现这一目标(ICML 2019)。在分布式设置中,我们适应了Guha等人的简单算法。 (IEEE Trans。知道和数据工程2003)以及Bahmani等人的流行$ K $ -Means $ \ | $。 (PVLDB 2012)。我们技术的理论应用是一种具有运行时间$ \ tilde {o}(nk^2/z)$的算法,假设$ k \ ll z \ ll n $。这与Omacle模型中此问题的$ \ Omega(NK^2/z)$的匹配下限相互补。
translated by 谷歌翻译
我们提出了两种线性土匪算法,具有每步复杂性sublerear的武器$ k $。该算法专为手臂集非常大且缓慢变化的应用而设计。我们的关键意识到,选择手臂还原为最大的内部产品搜索(MIPS)问题,该问题可以大约解决,而无需打破后悔保证。现有的近似MIPS求解器以均匀时间运行。我们扩展了这些求解器,并为在线学习问题提供理论保证,在线学习问题(即,以后的步骤取决于上一步中的反馈)成为一个独特的挑战。然后,我们明确表征了每步复杂性与遗憾之间的权衡。对于足够大的$ k $,我们的算法具有sublinear每步复杂性和$ \ tilde o(\ sqrt {t})$遗憾。从经验上讲,我们在合成环境和现实世界中的电影推荐问题中评估了我们提出的算法。与线性时间基线相比,我们提出的算法可以提供超过72倍的速度,同时保留了类似的遗憾。
translated by 谷歌翻译
Kernel matrices, as well as weighted graphs represented by them, are ubiquitous objects in machine learning, statistics and other related fields. The main drawback of using kernel methods (learning and inference using kernel matrices) is efficiency -- given $n$ input points, most kernel-based algorithms need to materialize the full $n \times n$ kernel matrix before performing any subsequent computation, thus incurring $\Omega(n^2)$ runtime. Breaking this quadratic barrier for various problems has therefore, been a subject of extensive research efforts. We break the quadratic barrier and obtain $\textit{subquadratic}$ time algorithms for several fundamental linear-algebraic and graph processing primitives, including approximating the top eigenvalue and eigenvector, spectral sparsification, solving linear systems, local clustering, low-rank approximation, arboricity estimation and counting weighted triangles. We build on the recent Kernel Density Estimation framework, which (after preprocessing in time subquadratic in $n$) can return estimates of row/column sums of the kernel matrix. In particular, we develop efficient reductions from $\textit{weighted vertex}$ and $\textit{weighted edge sampling}$ on kernel graphs, $\textit{simulating random walks}$ on kernel graphs, and $\textit{importance sampling}$ on matrices to Kernel Density Estimation and show that we can generate samples from these distributions in $\textit{sublinear}$ (in the support of the distribution) time. Our reductions are the central ingredient in each of our applications and we believe they may be of independent interest. We empirically demonstrate the efficacy of our algorithms on low-rank approximation (LRA) and spectral sparsification, where we observe a $\textbf{9x}$ decrease in the number of kernel evaluations over baselines for LRA and a $\textbf{41x}$ reduction in the graph size for spectral sparsification.
translated by 谷歌翻译
在随着时间变化的组合环境中的在线决策激励,我们研究了将离线算法转换为其在线对应物的问题。我们专注于使用贪婪算法对局部错误的贪婪算法进行恒定因子近似的离线组合问题。对于此类问题,我们提供了一个通用框架,该框架可有效地将稳健的贪婪算法转换为使用Blackwell的易近算法。我们证明,在完整信息设置下,由此产生的在线算法具有$ O(\ sqrt {t})$(近似)遗憾。我们进一步介绍了Blackwell易接近性的强盗扩展,我们称之为Bandit Blackwell的可接近性。我们利用这一概念将贪婪的稳健离线算法转变为匪(t^{2/3})$(近似)$(近似)的遗憾。展示了我们框架的灵活性,我们将脱机之间的转换应用于收入管理,市场设计和在线优化的几个问题,包括在线平台中的产品排名优化,拍卖中的储备价格优化以及supperular tossodular最大化。 。我们还将还原扩展到连续优化的类似贪婪的一阶方法,例如用于最大化连续强的DR单调下调功能,这些功能受到凸约束的约束。我们表明,当应用于这些应用程序时,我们的转型会导致新的后悔界限或改善当前已知界限。我们通过为我们的两个应用进行数值模拟来补充我们的理论研究,在这两种应用中,我们都观察到,转换的数值性能在实际情况下优于理论保证。
translated by 谷歌翻译
在机器学习中最大化的是一项基本任务,在本文中,我们研究了经典的Matroid约束下的删除功能强大版本。在这里,目标是提取数据集的小尺寸摘要,即使在对手删除了一些元素之后,该数据集包含高价值独立集。我们提出了恒定因素近似算法,其空间复杂性取决于矩阵的等级$ k $和已删除元素的数字$ d $。在集中式设置中,我们提出$(4.597+o(\ varepsilon))$ - 近似算法,带有摘要大小$ o(\ frac {k+d} {\ varepsilon^2} \ log \ log \ frac \ frac {k} })$将$(3.582 + o(\ varepsilon))$(k + \ frac {d} {\ varepsilon^2} \ log \ frac {k} {k} {\ varepsilon}) $摘要大小是单调的。在流设置中,我们提供$(9.435 + o(\ varepsilon))$ - 带有摘要大小和内存$ o的近似算法$(k + \ frac {d} {\ varepsilon^2} \ log \ log \ frac {k} {k} {k} {k} {k} {k} { \ varepsilon})$;然后,将近似因子提高到单调盒中的$(5.582+o(\ varepsilon))$。
translated by 谷歌翻译
主动回归考虑了一个线性回归问题,其中学习者会收到大量数据点,但只能观察到少数标签。由于在线算法可以处理增量培训数据并利用低计算成本,因此我们考虑了主动回归问题的在线扩展:学习者一一接收数据点,并立即决定是否应该收集相应的标签。目的是有效地维护收到的数据点的回归,并具有少量的标签查询回归。我们在$ \ ell_p $损失下为此问题提出了新算法,其中$ p \ in [1,2] $。要获得$(1+ \ epsilon)$ - 近似解决方案,我们提出的算法仅需要$ \ tilde {\ Mathcal {o}}(\ epsilon^{ - 2} d \ log(n \ kappa))$查询标签,其中$ n $是数据点的数量,而$ \ kappa $是数据点的数量,称为条件号。数值结果验证了我们的理论结果,并表明我们的方法与离线活性回归算法具有可比性的性能。
translated by 谷歌翻译
大规模监督学习中的共同挑战是如何利用新的增量数据到预先训练的模型,而无需从头开始重新培训模型。受到这个问题的激励,我们重新审视动态最小二乘回归(LSR)的规范问题,其中目标是通过增量训练数据学习线性模型。在此设置,数据和标签$(\ mathbf {a} ^ {(t)},\ mathbf {b} ^ {(t)})\ in \ mathbb {r} ^ {t \ times d} \ times \ MathBB {R} ^ T $以在线方式发展($ t \ gg d $),目标是有效地将(近似)解决方案保持为$ \ min _ {\ mathbf {x} ^ {(t)}} \ | \ mathbf {a} ^ {(t)} \ mathbf {x} ^ {(t)} - \ mathbf {b} ^ {(t)} \ | \ | \ |在$中的所有$ t \。我们的主要结果是一种动态数据结构,它将任意小的恒定近似解,与摊销更新时间$ o(d ^ {1 + o(1)})$,几乎匹配静态的运行时间(草图 - 基于)解决方案。相比之下,对于精确的(甚至$ 1 / \ mathrm {poly}(n)$ - 准确性)解决方案,我们在静态和动态设置之间显示了分离,即动态LSR需要$ \ω(d ^ {2- O(1)})OMV猜想下的摊销更新时间(Henzinger等,STOC'15)。我们的数据结构在概念上简单,易于实施,并且在理论和实践中快速速度,通过对合成和现实世界数据集的实验进行了证实。
translated by 谷歌翻译
在本文中,我们介绍了对非对称确定点处理(NDPP)的在线和流媒体地图推断和学习问题,其中数据点以任意顺序到达,并且算法被约束以使用单次通过数据以及子线性存储器。在线设置有额外要求在任何时间点维护有效的解决方案。为了解决这些新问题,我们提出了具有理论担保的算法,在几个真实的数据集中评估它们,并显示它们对最先进的离线算法提供了可比的性能,该算法将整个数据存储在内存中并采取多次传递超过它。
translated by 谷歌翻译
我们研究了用于线性回归的主动采样算法,该算法仅旨在查询目标向量$ b \ in \ mathbb {r} ^ n $的少量条目,并将近最低限度输出到$ \ min_ {x \ In \ mathbb {r} ^ d} \ | ax-b \ | $,其中$ a \ in \ mathbb {r} ^ {n \ times d} $是一个设计矩阵和$ \ | \ cdot \ | $是一些损失函数。对于$ \ ell_p $ norm回归的任何$ 0 <p <\ idty $,我们提供了一种基于Lewis权重采样的算法,其使用只需$ \ tilde {o}输出$(1+ \ epsilon)$近似解决方案(d ^ {\ max(1,{p / 2})} / \ mathrm {poly}(\ epsilon))$查询到$ b $。我们表明,这一依赖于$ D $是最佳的,直到对数因素。我们的结果解决了陈和Derezi的最近开放问题,陈和Derezi \'{n} Ski,他们为$ \ ell_1 $ norm提供了附近的最佳界限,以及$ p \中的$ \ ell_p $回归的次优界限(1,2) $。我们还提供了$ O的第一个总灵敏度上限(D ^ {\ max \ {1,p / 2 \} \ log ^ 2 n)$以满足最多的$ p $多项式增长。这改善了Tukan,Maalouf和Feldman的最新结果。通过将此与我们的技术组合起来的$ \ ell_p $回归结果,我们获得了一个使$ \ tilde o的活动回归算法(d ^ {1+ \ max \ {1,p / 2 \}} / \ mathrm {poly}。 (\ epsilon))$疑问,回答陈和德里兹的另一个打开问题{n}滑雪。对于Huber损失的重要特殊情况,我们进一步改善了我们对$ \ tilde o的主动样本复杂性的绑定(d ^ {(1+ \ sqrt2)/ 2} / \ epsilon ^ c)$和非活跃$ \ tilde o的样本复杂性(d ^ {4-2 \ sqrt 2} / \ epsilon ^ c)$,由于克拉克森和伍德拉夫而改善了Huber回归的以前的D ^ 4 $。我们的敏感性界限具有进一步的影响,使用灵敏度采样改善了各种先前的结果,包括orlicz规范子空间嵌入和鲁棒子空间近似。最后,我们的主动采样结果为每种$ \ ell_p $ norm提供的第一个Sublinear时间算法。
translated by 谷歌翻译
顺序决策中的一个核心问题是开发实用且计算上有效的算法,但支持灵活的通用模型的使用。关注上下文匪徒问题,最近的进度在可能的替代品数量(“动作”)很小时提供了可证明的有效算法,并具有很强的经验性能,但是在大型,连续的行动空间中进行决策的保证仍然难以捉摸,导致了重要的重要性理论与实践之间的差距。我们介绍了具有连续线性结构化作用空间的上下文匪徒的第一个有效的通用算法。我们的算法利用了(i)监督学习的计算序列,以及(ii)在动作空间上进行优化,并实现样本复杂性,运行时和内存,独立于动作空间的大小。此外,这是简单而实用的。我们进行大规模的经验评估,并表明我们的方法通常比标准基准相比具有较高的性能和效率。
translated by 谷歌翻译
我们提出了改进的算法,并为身份测试$ n $维分布的问题提供了统计和计算下限。在身份测试问题中,我们将作为输入作为显式分发$ \ mu $,$ \ varepsilon> 0 $,并访问对隐藏分布$ \ pi $的采样甲骨文。目标是区分两个分布$ \ mu $和$ \ pi $是相同的还是至少$ \ varepsilon $ -far分开。当仅从隐藏分布$ \ pi $中访问完整样本时,众所周知,可能需要许多样本,因此以前的作品已经研究了身份测试,并额外访问了各种有条件采样牙齿。我们在这里考虑一个明显弱的条件采样甲骨文,称为坐标Oracle,并在此新模型中提供了身份测试问题的相当完整的计算和统计表征。我们证明,如果一个称为熵的分析属性为可见分布$ \ mu $保留,那么对于任何使用$ \ tilde {o}(n/\ tilde {o}),有一个有效的身份测试算法Varepsilon)$查询坐标Oracle。熵的近似张力是一种经典的工具,用于证明马尔可夫链的最佳混合时间边界用于高维分布,并且最近通过光谱独立性为许多分布族建立了最佳的混合时间。我们将算法结果与匹配的$ \ omega(n/\ varepsilon)$统计下键进行匹配的算法结果补充,以供坐标Oracle下的查询数量。我们还证明了一个计算相变:对于$ \ {+1,-1,-1 \}^n $以上的稀疏抗抗铁磁性模型,在熵失败的近似张力失败的状态下,除非RP = np,否则没有有效的身份测试算法。
translated by 谷歌翻译
我们研究了在线偏好聚合的基本模型,其中算法保留了$ n $元素的有序列表。输入是首选集$ r_1,r_2,\ dots,r_t,\ dots $的流。在看到$ r_t $并且在不了解未来集合的情况下,必须将算法重新读取元素(更改列表订购),以便至少在列表的前面找到$ r_t $的一个元素。所产生的成本是列表更新成本的总和(相邻列表元素的互换数量)和访问成本(列表中$ r_t $的第一个元素的位置)。这种情况自然发生在诸如使用商店客户聚集的偏好中在线商店订购的应用程序中。该问题的理论基础称为Min-sum集盖。与以前的工作(Fotakis等人,ICALP 2020,NIPS 2020)不同,主要研究了在线算法ALG对静态最佳解决方案(单个最佳列表顺序)的性能,我们在本文中,我们研究了一个更难的变体,其中一个更难基准是可证明的更强的最佳动态解决方案OPT(也可能会修改列表排序)。就在线商店而言,这意味着其用户群的汇总偏好随时间发展。我们构建了一种计算高效的随机算法,其竞争比(alg-opt成本比)为$ O(r^2)$,并证明存在确定性$ O(r^4)$ - 竞争算法。在这里,$ r $是集合$ r_t $的最大基数。这是第一个算法的比率不依赖于$ n $:此问题的先前最佳算法是$ O(r^{3/2} \ cdot \ sqrt \ sqrt {n})$ - 竞争性和$ \ omega(r )$是任何确定性在线算法的性能的下限。
translated by 谷歌翻译
在使用提供明确定义的隐私保证的用户数据时,至关重要。在这项工作中,我们旨在与第三方私下操纵和分享整个稀疏数据集。实际上,差异隐私已成为隐私的黄金标准,但是,当涉及到稀疏数据集时,作为我们的主要结果之一,我们证明\ emph {any}与最初的私人机制有差异化的私人机制数据集注定要拥有非常薄弱的隐私保证。因此,我们需要选择其他隐私概念,例如$ k $ - 匿名性更好地在这种情况下保存实用程序。在这项工作中,我们介绍了$ k $ - 匿名的变体,我们称之为平滑$ k $ - 匿名和设计简单算法,可有效地提供平滑的$ k $ - 匿名性。我们进一步执行经验评估以支持我们的理论保证,并表明我们的算法改善了匿名数据下游机器学习任务的性能。
translated by 谷歌翻译