顺序决策中的一个核心问题是开发实用且计算上有效的算法,但支持灵活的通用模型的使用。关注上下文匪徒问题,最近的进度在可能的替代品数量(“动作”)很小时提供了可证明的有效算法,并具有很强的经验性能,但是在大型,连续的行动空间中进行决策的保证仍然难以捉摸,导致了重要的重要性理论与实践之间的差距。我们介绍了具有连续线性结构化作用空间的上下文匪徒的第一个有效的通用算法。我们的算法利用了(i)监督学习的计算序列,以及(ii)在动作空间上进行优化,并实现样本复杂性,运行时和内存,独立于动作空间的大小。此外,这是简单而实用的。我们进行大规模的经验评估,并表明我们的方法通常比标准基准相比具有较高的性能和效率。
translated by 谷歌翻译
设计有效的通用上下文盗版算法,这些算法与大型甚至连续的动作空间一起使用,将有助于应用于重要场景,例如信息检索,推荐系统和连续控制。尽管获得标准的遗憾保证可能是无望的,但已经提出了另一种遗憾的观念来解决大型行动。我们为上下文土匪提出了一个平稳的遗憾概念,该概念主导了先前提出的替代方案。我们在统计和计算高效的算法上设计了一种在标准监督的甲骨文中与一般功能近似作用的统计和高效算法。我们还提出了一种自适应算法,该算法会自动适应任何平滑度。我们的算法可用于在标准遗憾的情况下恢复以前的minimax/pareto最佳保证我们提出的算法。
translated by 谷歌翻译
在线学习和决策中的一个核心问题 - 从土匪到强化学习 - 是要了解哪种建模假设会导致样本有效的学习保证。我们考虑了一个普遍的对抗性决策框架,该框架涵盖了(结构化的)匪徒问题,这些问题与对抗性动力学有关。我们的主要结果是通过新的上限和下限显示决策估计系数,这是Foster等人引入的复杂度度量。在与我们环境的随机对应物中,对于对抗性决策而言是必要和足够的遗憾。但是,与随机设置相比,必须将决策估计系数应用于所考虑的模型类(或假设)的凸壳。这就确定了容纳对抗奖励或动态的价格受凸层化模型类的行为的约束,并恢复了许多现有结果 - 既积极又负面。在获得这些保证的途径中,我们提供了新的结构结果,将决策估计系数与其他众所周知的复杂性度量的变体联系起来,包括Russo和Van Roy的信息比以及Lattimore和Gy的探索目标\“ {o} rgy。
translated by 谷歌翻译
我们研究$ k $ used的上下文决斗强盗问题,一个顺序决策制定设置,其中学习者使用上下文信息来制作两个决定,但只观察到\ emph {基于优先级的反馈}建议一个决定比另一个决定更好。我们专注于可实现的遗憾最小化问题,其中反馈由一个由给定函数类$ \ mathcal f $规定的成对偏好矩阵生成。我们提供了一种新的算法,实现了最佳反应遗憾的新概念的最佳遗憾,这是一个严格更强烈的性能测量,而不是先前作品所考虑的绩效衡量标准。该算法还在计算上有效,在多项式时间中运行,假设访问在线丢失回归超过$ \ mathcal f $。这可以解决dud \'ik等人的开放问题。[2015]关于Oracle高效,后悔 - 用于上下文决斗匪徒的最佳算法。
translated by 谷歌翻译
本文以非线性功能近似研究基于模型的匪徒和增强学​​习(RL)。我们建议研究与近似局部最大值的收敛性,因为我们表明,即使对于具有确定性奖励的一层神经网络匪徒,全球收敛在统计上也很棘手。对于非线性匪徒和RL,本文介绍了一种基于模型的算法,即具有在线模型学习者(小提琴)的虚拟攀登,该算法可证明其收敛到局部最大值,其样品复杂性仅取决于模型类的顺序Rademacher复杂性。我们的结果意味着在几种具体设置(例如有限或稀疏模型类别的线性匪徒)和两层神经净匪内的新型全球或本地遗憾界限。一个关键的算法洞察力是,即使对于两层神经净模型类别,乐观也可能导致过度探索。另一方面,为了收敛到本地最大值,如果模型还可以合理地预测真实返回的梯度和Hessian的大小,则足以最大化虚拟返回。
translated by 谷歌翻译
在随机上下文的强盗设置中,对遗憾最小化算法进行了广泛的研究,但是他们的实例最少的最佳武器识别对应物仍然很少研究。在这项工作中,我们将重点关注$(\ epsilon,\ delta)$ - $ \ textit {pac} $设置:给定策略类$ \ pi $,学习者的目标是返回策略的目标, $ \ pi \ in \ pi $的预期奖励在最佳政策的$ \ epsilon $之内,概率大于$ 1- \ delta $。我们表征了第一个$ \ textit {实例依赖性} $ PAC样品通过数量$ \ rho _ {\ pi} $的上下文匪徒的复杂性,并根据$ \ rho _ {\ pi} $提供匹配的上和下限不可知论和线性上下文最佳武器标识设置。我们表明,对于遗憾的最小化和实例依赖性PAC而言,无法同时最小化算法。我们的主要结果是一种新的实例 - 最佳和计算有效算法,该算法依赖于多项式呼叫对Argmax Oracle的调用。
translated by 谷歌翻译
在随着时间变化的组合环境中的在线决策激励,我们研究了将离线算法转换为其在线对应物的问题。我们专注于使用贪婪算法对局部错误的贪婪算法进行恒定因子近似的离线组合问题。对于此类问题,我们提供了一个通用框架,该框架可有效地将稳健的贪婪算法转换为使用Blackwell的易近算法。我们证明,在完整信息设置下,由此产生的在线算法具有$ O(\ sqrt {t})$(近似)遗憾。我们进一步介绍了Blackwell易接近性的强盗扩展,我们称之为Bandit Blackwell的可接近性。我们利用这一概念将贪婪的稳健离线算法转变为匪(t^{2/3})$(近似)$(近似)的遗憾。展示了我们框架的灵活性,我们将脱机之间的转换应用于收入管理,市场设计和在线优化的几个问题,包括在线平台中的产品排名优化,拍卖中的储备价格优化以及supperular tossodular最大化。 。我们还将还原扩展到连续优化的类似贪婪的一阶方法,例如用于最大化连续强的DR单调下调功能,这些功能受到凸约束的约束。我们表明,当应用于这些应用程序时,我们的转型会导致新的后悔界限或改善当前已知界限。我们通过为我们的两个应用进行数值模拟来补充我们的理论研究,在这两种应用中,我们都观察到,转换的数值性能在实际情况下优于理论保证。
translated by 谷歌翻译
Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However, use of a template does not certify that the paper has been accepted for publication in the named journal. INFORMS journal templates are for the exclusive purpose of submitting to an INFORMS journal and should not be used to distribute the papers in print or online or to submit the papers to another publication.
translated by 谷歌翻译
低级MDP已成为研究强化学习中的表示和探索的重要模型。有了已知的代表,存在几种无模型的探索策略。相反,未知表示设置的所有算法都是基于模型的,因此需要对完整动力学进行建模。在这项工作中,我们介绍了低级MDP的第一个无模型表示学习算法。关键的算法贡献是一个新的Minimax表示学习目标,我们为其提供具有不同权衡的变体,其统计和计算属性不同。我们将这一表示的学习步骤与探索策略交织在一起,以无奖励的方式覆盖状态空间。所得算法可证明样品有效,并且可以适应一般函数近似以扩展到复杂的环境。
translated by 谷歌翻译
我们介绍了一个多臂强盗模型,其中奖励是多个随机变量的总和,每个动作只会改变其中的分布。每次动作之后,代理都会观察所有变量的实现。该模型是由营销活动和推荐系统激励的,在该系统中,变量代表单个客户的结果,例如点击。我们提出了UCB风格的算法,以估计基线上的动作的提升。我们研究了问题的多种变体,包括何时未知基线和受影响的变量,并证明所有这些变量均具有sublrinear后悔界限。我们还提供了较低的界限,以证明我们的建模假设的必要性是合理的。关于合成和现实世界数据集的实验显示了估计不使用这种结构的策略的振奋方法的好处。
translated by 谷歌翻译
强化学习理论集中在两个基本问题上:实现低遗憾,并确定$ \ epsilon $ - 最佳政策。虽然简单的减少允许人们应用低温算法来获得$ \ epsilon $ - 最佳政策并达到最坏的最佳速率,但尚不清楚低regret算法是否可以获得实例 - 最佳率的策略识别率。我们表明这是不可能的 - 在遗憾和确定$ \ epsilon $ - 最佳政策之间以最佳的利率确定了基本的权衡。由于我们的负面发现,我们提出了针对PAC表格增强学习实例依赖性样本复杂性的新量度,该方法明确说明了基础MDP中可达到的国家访问分布。然后,我们提出和分析一种基于计划的新型算法,该算法达到了这种样本的复杂性 - 产生的复杂性会随着次要差距和状态的“可达到性”而缩放。我们显示我们的算法几乎是最小的最佳选择,并且在一些示例中,我们实例依赖性样品复杂性比最差案例界限可显着改善。
translated by 谷歌翻译
我们考虑了上下文匪徒的问题,其中Action是一个地面集的子集,均值奖励由属于$ \ Mathcal {F} $的未知单调子模块函数建模。我们允许将时变的Matroid约束放置在可行的集合上。假设使用后悔$ \ mathsf {reg}(\ mathcal {f})$访问Oracle,我们的算法根据逆间隙加权策略有效地随机随机化估计函数的局部最佳函数。我们展示了这种过程的累积遗憾了时间,以时间为单位$ N $尺度作为$ o(\ sqrt {n \ mathsf {reg}(\ mathcal {f})),乘以乘法因子$ 1/2 $的基准。另一方面,使用(filmus和ward 2014)的技术,我们展示了与当地随机化的$ \ epsilon $ -greedy程序率为$ o(n ^ {2/3} \ mathsf {reg}(\mathcal {f})^ {1/3})$较强大的$(1-e ^ { - 1})$基准。
translated by 谷歌翻译
我们研究Stackelberg游戏,其中一位校长反复与长寿,非洋流代理商进行互动,而不知道代理商的回报功能。尽管当代理商是近视,非侧心代理会带来额外的并发症时,在Stackelberg游戏中的学习是充分理解的。尤其是,非洋流代理可以从战略上选择当前劣等的行动,以误导校长的学习算法并在未来获得更好的结果。我们提供了一个通用框架,该框架可在存在近视剂的情况下降低非洋白酶的学习来优化强大的匪徒。通过设计和分析微型反应性匪徒算法,我们的还原从校长学习算法的统计效率中进行了差异,以与其在诱导接近最佳的响应中的有效性。我们将此框架应用于Stackelberg Security Games(SSG),需求曲线,战略分类和一般有限的Stackelberg游戏的价格。在每种情况下,我们都表征了近最佳响应中存在的错误的类型和影响,并为此类拼写错误开发了一种鲁棒性的学习算法。在此过程中,我们通过最先进的$ O(n^3)$从SSGS中提高了SSG中的学习复杂性,从通过发现此类游戏的基本结构属性。该结果除了对非洋流药物学习之外,还具有独立的兴趣。
translated by 谷歌翻译
Despite the significant interest and progress in reinforcement learning (RL) problems with adversarial corruption, current works are either confined to the linear setting or lead to an undesired $\tilde{O}(\sqrt{T}\zeta)$ regret bound, where $T$ is the number of rounds and $\zeta$ is the total amount of corruption. In this paper, we consider the contextual bandit with general function approximation and propose a computationally efficient algorithm to achieve a regret of $\tilde{O}(\sqrt{T}+\zeta)$. The proposed algorithm relies on the recently developed uncertainty-weighted least-squares regression from linear contextual bandit \citep{he2022nearly} and a new weighted estimator of uncertainty for the general function class. In contrast to the existing analysis that heavily relies on the linear structure, we develop a novel technique to control the sum of weighted uncertainty, thus establishing the final regret bounds. We then generalize our algorithm to the episodic MDP setting and first achieve an additive dependence on the corruption level $\zeta$ in the scenario of general function approximation. Notably, our algorithms achieve regret bounds either nearly match the performance lower bound or improve the existing methods for all the corruption levels and in both known and unknown $\zeta$ cases.
translated by 谷歌翻译
脱机策略学习(OPL)利用现有数据收集了策略优化的先验,而无需任何活动探索。尽管存在普遍性和近期对此问题的兴趣,但其函数近似设置中的理论和算法基础仍然持续开发。在本文中,我们考虑了在具有神经网络的离线上下文匪徒中的分布换档,优化和泛化轴上的这个问题。特别是,我们提出了一种可从线有效的离线情境匪徒,具有神经网络函数近似,不需要对奖励的任何功能假设。我们表明,我们的方法在较温和的情况下通过不良语境提供了比现有的OPL工作的分支变换。值得注意的是,与任何其他OPL方法不同,我们的方法使用随机梯度血统以在线方式从脱机数据中学习,允许我们利用在线学习的优势进入离线设置。此外,我们表明我们的方法更加计算效率,并且更好地依赖于神经网络的有效维度而不是在线对应物。最后,我们展示了我们在一系列合成和现实世界OPL问题中的方法的实证效果。
translated by 谷歌翻译
We study time-inhomogeneous episodic reinforcement learning (RL) under general function approximation and sparse rewards. We design a new algorithm, Variance-weighted Optimistic $Q$-Learning (VO$Q$L), based on $Q$-learning and bound its regret assuming completeness and bounded Eluder dimension for the regression function class. As a special case, VO$Q$L achieves $\tilde{O}(d\sqrt{HT}+d^6H^{5})$ regret over $T$ episodes for a horizon $H$ MDP under ($d$-dimensional) linear function approximation, which is asymptotically optimal. Our algorithm incorporates weighted regression-based upper and lower bounds on the optimal value function to obtain this improved regret. The algorithm is computationally efficient given a regression oracle over the function class, making this the first computationally tractable and statistically optimal approach for linear MDPs.
translated by 谷歌翻译
大部分强化学习理论都建立在计算上难以实施的甲板上。专门用于在部分可观察到的马尔可夫决策过程(POMDP)中学习近乎最佳的政策,现有算法要么需要对模型动态(例如确定性过渡)做出强有力的假设,要么假设访问甲骨文作为解决艰难的计划或估算问题的访问子例程。在这项工作中,我们在合理的假设下开发了第一个用于POMDP的无Oracle学习算法。具体而言,我们给出了一种用于在“可观察” pomdps中学习的准化性时间端到端算法,其中可观察性是一个假设,即对国家而言,分离良好的分布诱导了分离良好的分布分布而不是观察。我们的技术规定了在不确定性下使用乐观原则来促进探索的更传统的方法,而是在构建策略涵盖的情况下提供了一种新颖的barycentric跨度应用。
translated by 谷歌翻译
我们通过反馈信息研究了离线和在线上下文优化的问题,而不是观察损失,我们会在事后观察到最佳的动作,而是对目标功能充分了解的甲骨文。我们的目标是最大程度地减少遗憾,这被定义为我们的损失与全知的甲骨所产生的损失之间的区别。在离线设置中,决策者可以从过去段中获得信息,并且需要做出一个决策,而在在线环境中,决策者在每个时期内都会动态地基于一组新的可行动作和上下文功能,以动态进行决策。 。对于离线设置,我们表征了最佳的最小策略,确定可以实现的性能,这是数据引起的信息的基础几何形状的函数。在在线环境中,我们利用这种几何表征来优化累积遗憾。我们开发了一种算法,该算法在时间范围内产生了对数的第一个遗憾。
translated by 谷歌翻译
我们研究了批量策略优化中模型选择的问题:给定固定的部分反馈数据集和$ M $ Model类,学习具有与最佳模型类的策略具有竞争力的性能的策略。通过识别任何模型选择算法应最佳地折衷的错误,以线性模型类在与线性模型类中的内容匪徒设置中的问题正式化。(1)近似误差,(2)统计复杂性,(3 )覆盖范围。前两个来源是在监督学习的模型选择中常见的,在最佳的交易中,这些属性得到了很好的研究。相比之下,第三个源是批量策略优化的唯一,并且是由于设置所固有的数据集移位。首先表明,没有批处理策略优化算法可以同时实现所有三个的保证,展示批量策略优化的困难之间的显着对比,以及监督学习中的积极结果。尽管存在这种负面结果,但我们表明,在三个错误源中的任何一个都可以实现实现剩下的两个近乎oracle不平等的算法。我们通过实验结论,证明了这些算法的功效。
translated by 谷歌翻译
在现实世界的强化学习应用中,学习者的观察空间无处不在,有关手头任务的相关信息和无关紧要。从高维观察中学习一直是监督学习和统计数据(例如,通过稀疏性)进行广泛研究的主题,但是即使在有限的状态/行动(表格)领域,也不能很好地理解强化学习中的类似问题。我们引入了一个新的问题设置,用于增强学习,即马尔可夫决策过程(EXOMDP),其中状态空间将(未知)分解成一个小的(或内源性)组件,并且很大的无关(或外源)组件;外源成分独立于学习者的行为,但以任意的,时间相关的方式演变。我们提供了一种新的算法Exorl,该算法学习了一种近乎最佳的政策,其样品复杂性在内源性组件的大小中多项式,几乎独立于外源成分的大小,从而提供了一个双重指数的改进算法。我们的结果首次突出了在存在外源信息的情况下首次可以进行样品高效的增强学习,并为未来的调查提供了简单,用户友好的基准。
translated by 谷歌翻译