亚组发现是一种描述性和探索性数据挖掘技术,可识别人群中有关感兴趣变量表现出有趣行为的亚组。亚组发现在知识发现和假设生成中有许多应用程序,但对于非结构化的高维数据(例如图像)仍然不适用。这是因为子组发现算法依赖于基于(属性,值)对定义描述性规则,但是,在非结构化数据中,属性并不是很好的定义。即使在数据中存在属性的概念(例如图像中的像素),由于数据的高维度,这些属性也不足够丰富,无法在规则中使用。在本文中,我们介绍了亚组感知的变异自动编码器,这是一种新型的变分自动编码器,它学习了非结构化数据的表示,从而导致具有较高质量的亚组。我们的实验结果证明了该方法在以高质量学习亚组的同时支持概念的解释性的有效性。
translated by 谷歌翻译
深度神经网络的成功严重依赖于他们在其投入和其产出之间编码复杂关系的能力。虽然此属性适用于培训数据,但它也掩盖了驱动预测的机制。本研究旨在通过采用基于离散变分的自动化器来改变预测类的干预机制来揭示隐藏的概念。然后,解释模型从任何隐藏层和相应的介入表示可视化编码信息。通过评估原始代表与介入代表之间的差异,可以确定可以改变该类的概念,从而提供可解释性。我们展示了我们在Celeba上的方法的有效性,在那里我们对数据中的偏见显示了各种可视化,并建议揭示和改变偏见的不同干预措施。
translated by 谷歌翻译
鉴于部署更可靠的机器学习系统的重要性,研究界内的机器学习模型的解释性得到了相当大的关注。在计算机视觉应用中,生成反事实方法表示如何扰乱模型的输入来改变其预测,提供有关模型决策的详细信息。目前的方法倾向于产生关于模型决策的琐碎的反事实,因为它们通常建议夸大或消除所分类的属性的存在。对于机器学习从业者,这些类型的反事件提供了很少的价值,因为它们没有提供有关不期望的模型或数据偏差的新信息。在这项工作中,我们确定了琐碎的反事实生成问题,我们建议潜水以缓解它。潜水在使用多样性强制损失限制的解除印章潜在空间中学习扰动,以发现关于模型预测的多个有价值的解释。此外,我们介绍一种机制,以防止模型产生微不足道的解释。 Celeba和Synbols的实验表明,与先前的最先进的方法相比,我们的模型提高了生产高质量有价值解释的成功率。代码可在https://github.com/elementai/beyond- trial-explanations获得。
translated by 谷歌翻译
我们提出了一种自我监督的方法,以解除高维数据变化的因素,该因素不依赖于基本变化概况的先验知识(例如,没有关于要提取单个潜在变量的数量或分布的假设)。在我们称为nashae的方法中,通过促进从所有其他编码元素中恢复的每个编码元素和恢复的元素的信息之间的差异,在标准自动编码器(AE)的低维潜在空间中完成了高维的特征分离。通过将其作为AE和回归网络合奏之间的Minmax游戏来有效地促进了分解,从而估算了一个元素,该元素以对所有其他元素的观察为条件。我们将我们的方法与使用现有的分离指标进行定量比较。此外,我们表明Nashae具有提高的可靠性和增加的能力来捕获学习潜在表示中的显着数据特征。
translated by 谷歌翻译
在研究和实践中,近几十年来,机器学习(ML)取得了巨大的成功。在网络物理系统(CPS)中,ML例如用于优化系统,以检测异常或识别系统故障的根本原因。然而,现有算法遭受了两个主要缺点:(i)他们很难被人类专家解释。 (ii)将一个系统转移到另一个系统(类似)系统的结果通常是一个挑战。概念学习,或代表学习(Repl),是两个缺点的解决方案;模仿人的解决方案方法来解释能力和转移能力:通过学习诸如物理量或系统状态的一般概念,模型由人类解释。此外,这种抽象水平的概念通常可以应用于各种不同的系统。现代ML方法已广泛用于CPS,但到目前为止,概念学习和转移学习几乎不使用。在本文中,我们提供了关于在时间序列数据中学习物理概念的方法的当前研究状态的概述,这是CPS的传感器数据的主要形式。我们还使用三箱系统的示例来分析来自现有技术的最重要的方法。基于这些混凝土实现1,我们讨论了方法的优缺点,并显示了哪些目的,并且可以在其中使用它们的条件。
translated by 谷歌翻译
当前独立于域的经典计划者需要问题域和实例作为输入的符号模型,从而导致知识采集瓶颈。同时,尽管深度学习在许多领域都取得了重大成功,但知识是在与符号系统(例如计划者)不兼容的亚符号表示中编码的。我们提出了Latplan,这是一种无监督的建筑,结合了深度学习和经典计划。只有一组未标记的图像对,显示了环境中允许的过渡子集(训练输入),Latplan学习了环境的完整命题PDDL动作模型。稍后,当给出代表初始状态和目标状态(计划输入)的一对图像时,Latplan在符号潜在空间中找到了目标状态的计划,并返回可视化的计划执行。我们使用6个计划域的基于图像的版本来评估LATPLAN:8个插头,15个式嘴,Blockworld,Sokoban和两个LightsOut的变体。
translated by 谷歌翻译
Deep learning (DL) methods where interpretability is intrinsically considered as part of the model are required to better understand the relationship of clinical and imaging-based attributes with DL outcomes, thus facilitating their use in the reasoning behind medical decisions. Latent space representations built with variational autoencoders (VAE) do not ensure individual control of data attributes. Attribute-based methods enforcing attribute disentanglement have been proposed in the literature for classical computer vision tasks in benchmark data. In this paper, we propose a VAE approach, the Attri-VAE, that includes an attribute regularization term to associate clinical and medical imaging attributes with different regularized dimensions in the generated latent space, enabling a better-disentangled interpretation of the attributes. Furthermore, the generated attention maps explained the attribute encoding in the regularized latent space dimensions. Using the Attri-VAE approach we analyzed healthy and myocardial infarction patients with clinical, cardiac morphology, and radiomics attributes. The proposed model provided an excellent trade-off between reconstruction fidelity, disentanglement, and interpretability, outperforming state-of-the-art VAE approaches according to several quantitative metrics. The resulting latent space allowed the generation of realistic synthetic data in the trajectory between two distinct input samples or along a specific attribute dimension to better interpret changes between different cardiac conditions.
translated by 谷歌翻译
我们介绍了强大的子组发现的问题,即,找到一个关于一个或多个目标属性的脱颖而出的子集的一组可解释的描述,2)是统计上的鲁棒,并且3)非冗余。许多尝试已经挖掘了局部强壮的子组或解决模式爆炸,但我们是第一个从全球建模角度同时解决这两个挑战的爆炸。首先,我们制定广泛的模型类别的子组列表,即订购的子组,可以组成的单次组和多变量目标,该目标可以由标称或数字变量组成,并且包括其定义中的传统Top-1子组发现。这种新颖的模型类允许我们使用最小描述长度(MDL)原理来形式地形化最佳强大的子组发现,在那里我们分别为标称和数字目标的最佳归一化最大可能性和贝叶斯编码而度假。其次,正如查找最佳子组列表都是NP-Hard,我们提出了SSD ++,一个贪婪的启发式,找到了很好的子组列表,并保证了根据MDL标准的最重要的子组在每次迭代中添加,这被显示为等同于贝叶斯一个样本比例,多项式或子组之间的多项式或T检验,以及数据集边际目标分布以及多假设检测罚款。我们经验上显示了54个数据集,即SSD ++优于先前的子组设置发现方法和子组列表大小。
translated by 谷歌翻译
对机器学习和创造力领域的兴趣越来越大。这项调查概述了计算创造力理论,关键机器学习技术(包括生成深度学习)和相应的自动评估方法的历史和现状。在对该领域的主要贡献进行了批判性讨论之后,我们概述了当前的研究挑战和该领域的新兴机会。
translated by 谷歌翻译
现实世界数据库很复杂,它们通常会呈现冗余,并在同一数据的异质和多个表示之间共享相关性。因此,在视图之间利用和解开共享信息至关重要。为此,最近的研究经常将所有观点融合到共享的非线性复杂潜在空间中,但它们失去了解释性。为了克服这一局限性,我们在这里提出了一种新的方法,将多个变异自动编码器(VAE)结构与因子分析潜在空间(FA-VAE)相结合。具体而言,我们使用VAE在连续的潜在空间中学习每个异质观点的私人表示。然后,我们通过使用线性投影矩阵将每个私有变量投影到低维的潜在空间来对共享潜在空间进行建模。因此,我们在私人信息和共享信息之间创建了可解释的层次依赖性。这样,新型模型可以同时:(i)从多种异质观点中学习,(ii)获得可解释的层次共享空间,以及(iii)在生成模型之间执行传输学习。
translated by 谷歌翻译
无监督的黑盒模型要挑战。实际上,大多数现有的解释性方法都要求标签来选择要解释的黑框输出的组件。在没有标签的情况下,黑框输出通常是表示向量,其组件的分量与任何有意义的数量不符。因此,选择哪些组件在无标签的无监督/自我监督的设置中是一个重要但未解决的问题。为了弥合文献中的这一差距,我们介绍了事后解释技术的两个关键扩展:(1)无标签的功能重要性以及(2)无标签的示例分别重要的示例,这些示例分别强调了黑盒的有影响力的特征和训练示例在推理时间构建表示。我们证明,我们的扩展可以成功实现,以围绕许多现有功能和示例重要性方法的简单包装器实现。我们通过定性和定量的比较来说明我们无标记的解释性范式的实用性,该范式对经过不同无监督任务的各种自动编码器学到的表示空间进行了定量比较。
translated by 谷歌翻译
带有变异自动编码器(VAE)的学习分解表示通常归因于损失的正则化部分。在这项工作中,我们强调了数据与损失的重建项之间的相互作用,这是VAE中解散的主要贡献者。我们注意到,标准化的基准数据集的构建方式有利于学习似乎是分解的表示形式。我们设计了一个直观的对抗数据集,该数据集利用这种机制破坏了现有的最新分解框架。最后,我们提供了一种解决方案,可以通过修改重建损失来实现分离,从而影响VAES如何感知数据点之间的距离。
translated by 谷歌翻译
本次调查绘制了用于分析社交媒体数据的生成方法的研究状态的广泛的全景照片(Sota)。它填补了空白,因为现有的调查文章在其范围内或被约会。我们包括两个重要方面,目前正在挖掘和建模社交媒体的重要性:动态和网络。社会动态对于了解影响影响或疾病的传播,友谊的形成,友谊的形成等,另一方面,可以捕获各种复杂关系,提供额外的洞察力和识别否则将不会被注意的重要模式。
translated by 谷歌翻译
可解释的人工智能(XAI)的新兴领域旨在为当今强大但不透明的深度学习模型带来透明度。尽管本地XAI方法以归因图的形式解释了个体预测,从而确定了重要特征的发生位置(但没有提供有关其代表的信息),但全局解释技术可视化模型通常学会的编码的概念。因此,两种方法仅提供部分见解,并留下将模型推理解释的负担。只有少数当代技术旨在将本地和全球XAI背后的原则结合起来,以获取更多信息的解释。但是,这些方法通常仅限于特定的模型体系结构,或对培训制度或数据和标签可用性施加其他要求,这实际上使事后应用程序成为任意预训练的模型。在这项工作中,我们介绍了概念相关性传播方法(CRP)方法,该方法结合了XAI的本地和全球观点,因此允许回答“何处”和“ where”和“什么”问题,而没有其他约束。我们进一步介绍了相关性最大化的原则,以根据模型对模型的有用性找到代表性的示例。因此,我们提高了对激活最大化及其局限性的共同实践的依赖。我们证明了我们方法在各种环境中的能力,展示了概念相关性传播和相关性最大化导致了更加可解释的解释,并通过概念图表,概念组成分析和概念集合和概念子区和概念子区和概念子集和定量研究对模型的表示和推理提供了深刻的见解。它们在细粒度决策中的作用。
translated by 谷歌翻译
我们描述了作为黑暗机器倡议和LES Houches 2019年物理学研讨会进行的数据挑战的结果。挑战的目标是使用无监督机器学习算法检测LHC新物理学的信号。首先,我们提出了如何实现异常分数以在LHC搜索中定义独立于模型的信号区域。我们定义并描述了一个大型基准数据集,由> 10亿美元的Muton-Proton碰撞,其中包含> 10亿美元的模拟LHC事件组成。然后,我们在数据挑战的背景下审查了各种异常检测和密度估计算法,我们在一组现实分析环境中测量了它们的性能。我们绘制了一些有用的结论,可以帮助开发无监督的新物理搜索在LHC的第三次运行期间,并为我们的基准数据集提供用于HTTPS://www.phenomldata.org的未来研究。重现分析的代码在https://github.com/bostdiek/darkmachines-unsupervisedChallenge提供。
translated by 谷歌翻译
我们采用变化性AutoEncoders从单粒子Anderson杂质模型谱函数的数据集中提取物理洞察。培训AutoEncoders以查找低维,潜在的空间表示,其忠实地表征培训集的每个元素,通过重建误差测量。变形式自动化器,标准自动化器的概率概括,进一步条件促进了高度可解释的特征。在我们的研究中,我们发现学习的潜在变量与众所周知的众所周知,但非活动的参数强烈关联,这些参数表征了安德森杂质模型中的紧急行为。特别地,一种潜在的可变变量与粒子孔不对称相关,而另一个潜在的变量与杂质模型中动态产生的低能量尺度接近一对一的对应关系。使用符号回归,我们将此变量模拟了该变量作为已知的裸物理输入参数和“重新发现”的kondo温度的非扰动公式。我们开发的机器学习管道表明了一种通用方法,它开启了发现其他物理系统中的新领域知识的机会。
translated by 谷歌翻译
Despite being responsible for state-of-the-art results in several computer vision and natural language processing tasks, neural networks have faced harsh criticism due to some of their current shortcomings. One of them is that neural networks are correlation machines prone to model biases within the data instead of focusing on actual useful causal relationships. This problem is particularly serious in application domains affected by aspects such as race, gender, and age. To prevent models from incurring on unfair decision-making, the AI community has concentrated efforts in correcting algorithmic biases, giving rise to the research area now widely known as fairness in AI. In this survey paper, we provide an in-depth overview of the main debiasing methods for fairness-aware neural networks in the context of vision and language research. We propose a novel taxonomy to better organize the literature on debiasing methods for fairness, and we discuss the current challenges, trends, and important future work directions for the interested researcher and practitioner.
translated by 谷歌翻译
随着脑成像技术和机器学习工具的出现,很多努力都致力于构建计算模型来捕获人脑中的视觉信息的编码。最具挑战性的大脑解码任务之一是通过功能磁共振成像(FMRI)测量的脑活动的感知自然图像的精确重建。在这项工作中,我们调查了来自FMRI的自然图像重建的最新学习方法。我们在架构设计,基准数据集和评估指标方面检查这些方法,并在标准化评估指标上呈现公平的性能评估。最后,我们讨论了现有研究的优势和局限,并提出了潜在的未来方向。
translated by 谷歌翻译
We present a framework for the unsupervised learning of neurosymbolic encoders, which are encoders obtained by composing neural networks with symbolic programs from a domain-specific language. Our framework naturally incorporates symbolic expert knowledge into the learning process, which leads to more interpretable and factorized latent representations compared to fully neural encoders. We integrate modern program synthesis techniques with the variational autoencoding (VAE) framework, in order to learn a neurosymbolic encoder in conjunction with a standard decoder. The programmatic descriptions from our encoders can benefit many analysis workflows, such as in behavior modeling where interpreting agent actions and movements is important. We evaluate our method on learning latent representations for real-world trajectory data from animal biology and sports analytics. We show that our approach offers significantly better separation of meaningful categories than standard VAEs and leads to practical gains on downstream analysis tasks, such as for behavior classification.
translated by 谷歌翻译
当前的大多数解释性技术都集中在捕获输入空间中特征的重要性。但是,鉴于模型和数据生成过程的复杂性,由此产生的解释远非“完整”,因为它们缺乏特征相互作用和可视化其“效应”的指示。在这项工作中,我们提出了一个新颖的双流式解释性框架,以解释任何基于CNN的图像分类器(架构不考虑)做出的决定。为此,我们首先将潜在特征从分类器中解开,然后将这些功能与观察到的/人为定义的“上下文”功能保持一致。这些对齐特征形成了具有语义上有意义的概念,用于提取描述“感知”数据生成过程的因果图,描述了未观察到的潜在特征和观察到的“上下文”特征之间的功能间和内部内部和内部内部相互作用。该因果图是一个全局模型,可以从中提取不同形式的局部解释。具体而言,我们提供了一个生成器来可视化潜在空间中特征之间交互的“效果”,并从其作为局部解释中提取特征的重要性。我们的框架利用对抗性知识蒸馏来忠实地从分类器的潜在空间中学习表示形式,并将其用于提取视觉解释。我们使用带有附加正规化术语的stylegan-v2体系结构来执行分解和对齐。我们证明并评估了通过关于Morpho-Mnist和FFHQ人脸数据集获得的解释。我们的框架可在\ url {https://github.com/koriavinash1/glance-explanations}上获得。
translated by 谷歌翻译