众所周知,从像素观察中进行的非质量增强学习(RL)是不稳定的。结果,许多成功的算法必须结合不同领域的实践和辅助损失,以在复杂的环境中学习有意义的行为。在这项工作中,我们提供了新颖的分析,表明这些不稳定性是通过卷积编码器和低质量奖励进行时间差异学习而产生的。我们表明,这种新的视觉致命三合会导致不稳定的训练和过早的融合归化解决方案,这是一种现象,我们将灾难性的自相传为。基于我们的分析,我们提出了A-LIX,这是一种为编码器梯度提供适应性正则化的方法,该梯度明确防止使用双重目标防止灾难性的自我抗辩发生。通过应用A-LIX,我们在DeepMind Control和Atari 100K基准测试方面显着优于先前的最先进,而无需任何数据增强或辅助损失。
translated by 谷歌翻译
尽管经过过度公路化,但通过监督学习培训的深网络易于优化,表现出优异的概括。解释这一点的一个假设是,过正交的深网络享有随机梯度下降引起的隐含正规化的好处,这些梯度下降引起的促进解决方案概括了良好的测试输入。推动深度加强学习(RL)方法也可能受益于这种效果是合理的。在本文中,我们讨论了监督学习中SGD的隐式正则化效果如何在离线深度RL设置中有害,导致普遍性较差和退化特征表示。我们的理论分析表明,当存在对时间差异学习的现有模型的隐式正则化模型时,由此产生的衍生规则器有利于与监督学习案件的显着对比的过度“混叠”的退化解决方案。我们凭经验备份这些发现,显示通过引导训练的深网络值函数学习的特征表示确实可以变得堕落,别名出在Bellman备份的两侧出现的状态操作对的表示。要解决此问题,我们派生了这个隐式规范器的形式,并通过此推导的启发,提出了一种简单且有效的显式规范器,称为DR3,抵消了本隐式规范器的不良影响。当与现有的离线RL方法结合使用时,DR3大大提高了性能和稳定性,缓解了ATARI 2600游戏,D4RL域和来自图像的机器人操作。
translated by 谷歌翻译
离线强化学习在利用大型预采用的数据集进行政策学习方面表现出了巨大的希望,使代理商可以放弃经常廉价的在线数据收集。但是,迄今为止,离线强化学习的探索相对较小,并且缺乏对剩余挑战所在的何处的了解。在本文中,我们试图建立简单的基线以在视觉域中连续控制。我们表明,对两个基于最先进的在线增强学习算法,Dreamerv2和DRQ-V2进行了简单的修改,足以超越事先工作并建立竞争性的基准。我们在现有的离线数据集中对这些算法进行了严格的评估,以及从视觉观察结果中进行离线强化学习的新测试台,更好地代表现实世界中离线增强学习问题中存在的数据分布,并开放我们的代码和数据以促进此方面的进度重要领域。最后,我们介绍并分析了来自视觉观察的离线RL所独有的几个关键Desiderata,包括视觉分散注意力和动态视觉上可识别的变化。
translated by 谷歌翻译
We propose a simple data augmentation technique that can be applied to standard model-free reinforcement learning algorithms, enabling robust learning directly from pixels without the need for auxiliary losses or pre-training. The approach leverages input perturbations commonly used in computer vision tasks to transform input examples, as well as regularizing the value function and policy. Existing model-free approaches, such as Soft Actor-Critic (SAC) [22], are not able to train deep networks effectively from image pixels. However, the addition of our augmentation method dramatically improves SAC's performance, enabling it to reach state-of-the-art performance on the DeepMind control suite, surpassing model-based [23,38,24] methods and recently proposed contrastive learning [50]. Our approach, which we dub DrQ: Data-regularized Q, can be combined with any model-free reinforcement learning algorithm. We further demonstrate this by applying it to DQN [43] and significantly improve its data-efficiency on the Atari 100k [31] benchmark. An implementation can be found at https://sites. google.com/view/data-regularized-q.
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
深度神经网络是当今离线增强学习中最常用的功能近似值。先前的工作表明,接受TD学习和梯度下降训练的神经网可以表现出隐式正则化,可以通过这些网络的参数化不足来表征。具体而言,已经观察到在训练期间,倒数第二个特征层的排名(也称为\ textit {有效等级})急剧崩溃。反过来,这种崩溃被认为是为了降低模型在学习后期进一步适应的能力,从而导致最终表现降低。有效等级和绩效之间的这种关联使离线RL的有效等级引人注目,主要用于离线政策评估。在这项工作中,我们对三个离线RL数据集的有效等级与绩效之间的关系进行了仔细的实证研究:Bsuite,Atari和DeepMind Lab。我们观察到,直接关联仅存在于受限的设置中,并且在更广泛的超参数扫描中消失。此外,我们从经验上确定了三个学习的阶段,这些阶段解释了隐式正则化对学习动力学的影响,并发现单独进行引导不足以解释有效等级的崩溃。此外,我们表明其他几个因素可能会混淆有效的等级与绩效之间的关系,并得出结论,在简单假设下研究这种关联可能会产生高度误导。
translated by 谷歌翻译
当相互作用数据稀缺时,深厚的增强学习(RL)算法遭受了严重的性能下降,这限制了其现实世界的应用。最近,视觉表示学习已被证明是有效的,并且有望提高RL样品效率。这些方法通常依靠对比度学习和数据扩展来训练状态预测的过渡模型,这与在RL中使用模型的方式不同 - 基于价值的计划。因此,学到的模型可能无法与环境保持良好状态并产生一致的价值预测,尤其是当国家过渡不是确定性的情况下。为了解决这个问题,我们提出了一种称为价值一致表示学习(VCR)的新颖方法,以学习与决策直接相关的表示形式。更具体地说,VCR训练一个模型,以预测基于当前的状态(也称为“想象的状态”)和一系列动作。 VCR没有将这个想象中的状态与环境返回的真实状态保持一致,而是在两个状态上应用$ q $ - 价值头,并获得了两个行动值分布。然后将距离计算并最小化以迫使想象的状态产生与真实状态相似的动作值预测。我们为离散和连续的动作空间开发了上述想法的两个实现。我们对Atari 100K和DeepMind Control Suite基准测试进行实验,以验证其提高样品效率的有效性。已经证明,我们的方法实现了无搜索RL算法的新最新性能。
translated by 谷歌翻译
We present CURL: Contrastive Unsupervised Representations for Reinforcement Learning. CURL extracts high-level features from raw pixels using contrastive learning and performs offpolicy control on top of the extracted features. CURL outperforms prior pixel-based methods, both model-based and model-free, on complex tasks in the DeepMind Control Suite and Atari Games showing 1.9x and 1.2x performance gains at the 100K environment and interaction steps benchmarks respectively. On the DeepMind Control Suite, CURL is the first image-based algorithm to nearly match the sample-efficiency of methods that use state-based features. Our code is open-sourced and available at https://www. github.com/MishaLaskin/curl.
translated by 谷歌翻译
强化学习在许多应用中取得了巨大的成功。然而,样本效率仍然是一个关键挑战,突出的方法需要训练数百万(甚至数十亿)的环境步骤。最近,基于样本的基于图像的RL算法存在显着进展;然而,Atari游戏基准上的一致人级表现仍然是一个难以捉摸的目标。我们提出了一种在Muzero上建立了基于模式的基于模型的Visual RL算法,我们名称为高效零。我们的方法达到了194.3%的人类性能和Atari 100K基准的109.0%的中位数,只有两个小时的实时游戏体验,并且在DMControl 100k基准测试中的某些任务中优于状态萨克。这是第一次算法在atari游戏中实现超级人类性能,具有如此少的数据。高效零的性能也在2亿帧的比赛中靠近DQN的性能,而我们使用的数据减少了500倍。高效零的低样本复杂性和高性能可以使RL更接近现实世界的适用性。我们以易于理解的方式实现我们的算法,它可以在https://github.com/yewr/effionszero中获得。我们希望它将加速更广泛社区中MCT的RL算法的研究。
translated by 谷歌翻译
自成立以来,建立在广泛任务中表现出色的普通代理的任务一直是强化学习的重要目标。这个问题一直是对Alarge工作体系的研究的主题,并且经常通过观察Atari 57基准中包含的广泛范围环境的分数来衡量的性能。 Agent57是所有57场比赛中第一个超过人类基准的代理商,但这是以数据效率差的代价,需要实现近800亿帧的经验。以Agent57为起点,我们采用了各种各样的形式,以降低超过人类基线所需的经验200倍。在减少数据制度和Propose有效的解决方案时,我们遇到了一系列不稳定性和瓶颈,以构建更强大,更有效的代理。我们还使用诸如Muesli和Muzero之类的高性能方法证明了竞争性的性能。 TOOUR方法的四个关键组成部分是(1)近似信任区域方法,该方法可以从TheOnline网络中稳定引导,(2)损失和优先级的归一化方案,在学习具有广泛量表的一组值函数时,可以提高鲁棒性, (3)改进的体系结构采用了NFNET的技术技术来利用更深的网络而无需标准化层,并且(4)政策蒸馏方法可使瞬时贪婪的策略加班。
translated by 谷歌翻译
我们提出了一种简单的架构,用于通过将输入嵌入到学习的傅立叶基础上进行深度加强学习,并表明它提高了基于状态和基于图像的RL的样本效率。我们使用神经切线内核执行我们的架构的无限宽度分析,从理论上表明调整傅立叶基础的初始方差等同于学习的深网络的功能正则化。也就是说,这些学习了傅里叶功能允许调整训练数据中网络欠下或过度频率的网络的程度,因此提供了一种受控机制,以提高RL优化的稳定性和性能。经验上,这使我们可以通过降低网络优化过程中的网络对噪声的敏感性来优先考虑学习低频功能并加速学习,例如在贝尔曼更新期间。基于标准的和基于图像的RL基准测试的实验显示了我们在基线上的明显好处。网站https://alexanderli.com/learned-fourier-features.
translated by 谷歌翻译
虽然由强化学习(RL)训练的代理商可以直接解决越来越具有挑战性的任务,但概括到新颖环境的学习技能仍然非常具有挑战性。大量使用数据增强是一种有助于改善RL的泛化的有希望的技术,但经常发现它降低样品效率,甚至可以导致发散。在本文中,我们在常见的脱离政策RL算法中使用数据增强时调查不稳定性的原因。我们识别两个问题,均植根于高方差Q-targets。基于我们的研究结果,我们提出了一种简单但有效的技术,可以在增强下稳定这类算法。我们在基于Deepmind Control Suite的基准系列和机器人操纵任务中使用扫描和视觉变压器(VIT)对基于图像的RL进行广泛的实证评估。我们的方法极大地提高了增强下的呼声集的稳定性和样本效率,并实现了在具有看不见的视野视觉效果的环境中的图像的RL的最先进方法竞争的普遍化结果。我们进一步表明,我们的方法与基于Vit的亚体系结构的RL缩放,并且数据增强在此设置中可能尤为重要。
translated by 谷歌翻译
深厚的强化学习政策尽管在模拟的视觉控制任务中出色地效率,但表现出令人失望的能力,可以在输入培训图像中跨越跨干扰。图像统计或分散背景元素的变化是防止这种控制策略的概括和现实世界中适用性的陷阱。我们阐述了这样的直觉,即良好的视觉政策应该能够确定哪些像素对其决策很重要,并保留对图像跨图像的重要信息来源的识别。这意味着对具有较小概括差距的政策进行培训应集中在如此重要的像素上,而忽略其他像素。这导致引入显着引导的Q-Networks(SGQN),这是一种视觉增强学习的通用方法,与任何值函数学习方法兼容。 SGQN极大地提高了软演员 - 批评者的概括能力,并且在DeepMind Control Generalization基准上胜过现有的现有方法,为训练效率,概括性差距和政策解释性提供了新的参考。
translated by 谷歌翻译
Off-policy reinforcement learning (RL) using a fixed offline dataset of logged interactions is an important consideration in real world applications. This paper studies offline RL using the DQN Replay Dataset comprising the entire replay experience of a DQN agent on 60 Atari 2600 games. We demonstrate that recent off-policy deep RL algorithms, even when trained solely on this fixed dataset, outperform the fully-trained DQN agent. To enhance generalization in the offline setting, we present Random Ensemble Mixture (REM), a robust Q-learning algorithm that enforces optimal Bellman consistency on random convex combinations of multiple Q-value estimates. Offline REM trained on the DQN Replay Dataset surpasses strong RL baselines. Ablation studies highlight the role of offline dataset size and diversity as well as the algorithm choice in our positive results. Overall, the results here present an optimistic view that robust RL algorithms used on sufficiently large and diverse offline datasets can lead to high quality policies. To provide a testbed for offline RL and reproduce our results, the DQN Replay Dataset is released at offline-rl.github.io.
translated by 谷歌翻译
基于像素的控制的学习表示,最近在加固学习中获得了重大关注。已经提出了广泛的方法来实现高效学习,导致类似于完整状态设置中的复杂性。然而,超越仔细策划的像素数据集(以居中作物,适当的照明,清晰的背景等)仍然具有挑战性。在本文中,我们采用更困难的环境,纳入背景干扰者,作为解决这一挑战的第一步。我们提出了一种简单的基线方法,可以学习有意义的表示,没有基于度量的学习,没有数据增强,没有世界模型学习,也没有对比学习。然后,我们分析何时何种以及为什么先前提出的方法可能会失败或减少与此更难设置中的基线相同的表现,以及为什么我们应该仔细考虑扩展在井策良好环境之外的这种方法。我们的研究结果表明,基于奖励密度,问题的规划地平线,任务 - 无关组件等的规划等的粮食基准,对评估算法至关重要。基于这些观察,我们提出了在评估基准任务的算法时考虑不同的指标。我们希望在调查如何最佳地将RL应用于现实世界任务时激励研究人员对重新思考代表学习来激发研究人员。
translated by 谷歌翻译
深入学习的强化学习(RL)的结合导致了一系列令人印象深刻的壮举,许多相信(深)RL提供了一般能力的代理。然而,RL代理商的成功往往对培训过程中的设计选择非常敏感,这可能需要繁琐和易于易于的手动调整。这使得利用RL对新问题充满挑战,同时也限制了其全部潜力。在许多其他机器学习领域,AutomL已经示出了可以自动化这样的设计选择,并且在应用于RL时也会产生有希望的初始结果。然而,自动化强化学习(AutorL)不仅涉及Automl的标准应用,而且还包括RL独特的额外挑战,其自然地产生了不同的方法。因此,Autorl已成为RL中的一个重要研究领域,提供来自RNA设计的各种应用中的承诺,以便玩游戏等游戏。鉴于RL中考虑的方法和环境的多样性,在不同的子领域进行了大部分研究,从Meta学习到进化。在这项调查中,我们寻求统一自动的领域,我们提供常见的分类法,详细讨论每个区域并对研究人员来说是一个兴趣的开放问题。
translated by 谷歌翻译
一种被称为优先体验重播(PER)的广泛研究的深钢筋学习(RL)技术使代理可以从与其时间差异(TD)误差成正比的过渡中学习。尽管已经表明,PER是离散作用域中深度RL方法总体性能的最关键组成部分之一,但许多经验研究表明,在连续控制中,它的表现非常低于参与者 - 批评算法。从理论上讲,我们表明,无法有效地通过具有较大TD错误的过渡对演员网络进行训练。结果,在Q网络下计算的近似策略梯度与在最佳Q功能下计算的实际梯度不同。在此激励的基础上,我们引入了一种新颖的经验重播抽样框架,用于演员批评方法,该框架还认为稳定性和最新发现的问题是Per的经验表现不佳。引入的算法提出了对演员和评论家网络的有效和高效培训的改进的新分支。一系列广泛的实验验证了我们的理论主张,并证明了引入的方法显着优于竞争方法,并获得了与标准的非政策参与者 - 批评算法相比,获得最先进的结果。
translated by 谷歌翻译
可视化优化景观导致了数字优化的许多基本见解,并对优化技术进行了新的改进。但是,仅在少数狭窄的环境中生成了增强学习优化(“奖励表面”)的目标的可视化。这项工作首次介绍了27个最广泛使用的增强学习环境的奖励表面和相关的可视化。我们还探索了政策梯度方向上的奖励表面,并首次表明许多流行的强化学习环境经常出现“悬崖”(预期回报中突然下降)。我们证明,A2C经常将这些悬崖“脱落”到参数空间的低奖励区域,而PPO避免了它们,这证实了PPO对PPO的流行直觉,以改善以前的方法。我们还引入了一个高度可扩展的库,该库使研究人员将来可以轻松地生成这些可视化。我们的发现提供了新的直觉,以解释现代RL方法的成功和失败,我们的可视化构成了以新颖方式进行强化学习剂的几种失败模式。
translated by 谷歌翻译
通过比较它们在大型任务套件上的相对性能来主要评估深度加强学习(RL)算法。大多数已发布的Deep RL基准的结果比较了总体性能的积分估计,如任务的平均值和中位数分数,忽略了使用有限次训练运行所暗示的统计不确定性。从街机学习环境(ALE)开始,转向计算苛刻的基准导致只评估每项任务的少量运行的实践,加剧了点估计中的统计不确定性。在本文中,我们认为,在少数运行深处的RL政权中的可靠评估不能忽视结果中的不确定性,而无需冒着现场降低进展的风险。我们使用对Atari 100k基准测试的案例研究来说明这一点,在那里我们在单独从点估计中汲取的结论之间发现了大量差异与更全面的统计分析。旨在提高现场对报告的据报道的诸如少数经营的业绩的信心,我们倡导报告总绩效的间隔估计,并提出性能概况来解释结果的可变性,以及现在更强大和高效的总数的绩效作为狭隘的平均分数,在结果中取得小的不确定性。使用此类统计工具,我们在包括ALE,Procgen和DeepMind控制套件的其他广泛使用的RL基准测试中仔细审查了现有算法的性能评估,再次在先前的比较中显示差异。我们的调查结果呼吁改变我们如何评估深度RL的性能,我们提出了更严格的评估方法,伴随着开源库的最新,以防止不可靠的结果停滞不前。
translated by 谷歌翻译
由于其令人鼓舞的性能,在各种控制任务中的令人鼓舞的表现,深增强学习(Deep RL)一直在受到更高的关注。然而,在训练神经网络中的常规正则化技术(例如,$ L_2 $正则化,辍学)已经在RL方法中被忽略,可能是因为代理通常在相同的环境中进行培训和评估,因为Deep RL社区重点关注更多-Level算法设计。在这项工作中,我们在连续控制任务中提出了具有多种策略优化算法的正则化技术的第一综合研究。有趣的是,我们发现策略网络上的传统正则化技术通常可以带来大量改进,特别是在更难的任务上。我们的研究结果显示在训练HyperParameter变化方面是强大的。我们还将这些技术与更广泛使用的熵正则化进行了比较。此外,我们还研究正规化不同的组件,并发现策略网络通常是最佳的。我们进一步分析了为什么正则化可能有助于从四个观点来帮助推广 - 样本复杂性,奖励分配,重量规范和噪音鲁棒性。我们希望我们的研究为未来的规则策略优化算法提供指导。我们的代码可在https://github.com/xuanlinli17/ICLRR2021_RLREG上获得。
translated by 谷歌翻译