Recent work has shown that machine learning (ML) models can be trained to accurately forecast the dynamics of unknown chaotic dynamical systems. Such ML models can be used to produce both short-term predictions of the state evolution and long-term predictions of the statistical patterns of the dynamics (``climate''). Both of these tasks can be accomplished by employing a feedback loop, whereby the model is trained to predict forward one time step, then the trained model is iterated for multiple time steps with its output used as the input. In the absence of mitigating techniques, however, this technique can result in artificially rapid error growth, leading to inaccurate predictions and/or climate instability. In this article, we systematically examine the technique of adding noise to the ML model input during training as a means to promote stability and improve prediction accuracy. Furthermore, we introduce Linearized Multi-Noise Training (LMNT), a regularization technique that deterministically approximates the effect of many small, independent noise realizations added to the model input during training. Our case study uses reservoir computing, a machine-learning method using recurrent neural networks, to predict the spatiotemporal chaotic Kuramoto-Sivashinsky equation. We find that reservoir computers trained with noise or with LMNT produce climate predictions that appear to be indefinitely stable and have a climate very similar to the true system, while reservoir computers trained without regularization are unstable. Compared with other types of regularization that yield stability in some cases, we find that both short-term and climate predictions from reservoir computers trained with noise or with LMNT are substantially more accurate. Finally, we show that the deterministic aspect of our LMNT regularization facilitates fast hyperparameter tuning when compared to training with noise.
translated by 谷歌翻译
在本文中,我们考虑了与未知(或部分未知),非平稳性,潜在的嘈杂和混乱的时间演变相关的机器学习(ML)任务,以预测临界点过渡和长期尖端行为动力系统。我们专注于特别具有挑战性的情况,在过去的情况下,过去的动态状态时间序列主要是在状态空间的受限区域中,而要预测的行为会在ML未完全观察到的较大状态空间集中演变出来训练期间的模型。在这种情况下,要求ML预测系统能够推断出在训练过程中观察到的不同动态。我们研究了ML方法在多大程度上能够为此任务完成有用的结果以及它们失败的条件。通常,我们发现即使在极具挑战性的情况下,ML方法也出奇地有效,但是(正如人们所期望的)``需要``太多''的外推。基于科学知识的传统建模的ML方法,因此即使单独采取行动时,我们发现的混合预测系统也可以实现有用的预测。我们还发现,实现有用的结果可能需要使用使用非常仔细选择的ML超参数,我们提出了一个超参数优化策略来解决此问题。本文的主要结论是,基于ML (也许是由于临界点的穿越)包括在训练数据探索的集合中的动态。
translated by 谷歌翻译
经常性神经网络(RNNS)是强大的动态模型,广泛用于机器学习(ML)和神经科学。之前的理论作品集中在具有添加剂相互作用的RNN上。然而,门控 - 即乘法 - 相互作用在真神经元中普遍存在,并且也是ML中最佳性能RNN的中心特征。在这里,我们表明Gating提供灵活地控制集体动态的两个突出特征:i)时间尺寸和ii)维度。栅极控制时间尺度导致新颖的稳定状态,网络用作灵活积分器。与以前的方法不同,Gating允许这种重要功能而没有参数微调或特殊对称。门还提供一种灵活的上下文相关机制来重置存储器跟踪,从而补充存储器功能。调制维度的栅极可以诱导新颖的不连续的混沌转变,其中输入将稳定的系统推向强的混沌活动,与通常稳定的输入效果相比。在这种转变之上,与添加剂RNN不同,关键点(拓扑复杂性)的增殖与混沌动力学的外观解耦(动态复杂性)。丰富的动态总结在相图中,从而为ML从业者提供了一个原理参数初始化选择的地图。
translated by 谷歌翻译
许多科学领域需要对复杂系统的时间行为的可靠预测。然而,这种强烈的兴趣是通过建模问题阻碍:通常,描述所考虑的系统物理学的控制方程是不可访问的,或者在已知时,它们的解决方案可能需要与预测时间约束不兼容的计算时间。如今,以通用功能格式近似复杂的系统,并从可用观察中通知IT Nihilo已成为一个常见的做法,如过去几年出现的巨大科学工作所示。许多基于深神经网络的成功示例已经可用,尽管易于忽视了模型和保证边缘的概括性。在这里,我们考虑长期内存神经网络,并彻底调查训练集的影响及其结构对长期预测的质量。利用ergodic理论,我们分析了保证物理系统忠实模型的先验的数据量。我们展示了根据系统不变的培训集的知情设计如何以及潜在的吸引子的结构,显着提高了所产生的模型,在积极学习的背景下开放研究。此外,将说明依赖于存储器能够的模型时内存初始化的非琐碎效果。我们的调查结果为有效数据驱动建模的任何复杂动态系统所需的数量和选择提供了基于证据的良好实践。
translated by 谷歌翻译
从图像识别和对象检测到语音识别和机器翻译,神经网络已经证明是非常成功的广泛复杂任务。他们的成功之一是给出了适当的训练数据集的未来动态的技能。以前的研究表明,回声状态网络(ESNS)是如何成功地预测比Lyapunov时间长时间的混乱系统。本研究表明,显着的是,ESN可以成功地预测与训练集中包含的任何行为不同的动态行为。提供了用于流体动力学问题的证据,其中流动可以在层流(有序)和湍流(无序)的制度之间过渡。尽管仅受到湍流制度培训,但发现ESNS被发现预测层流行为。此外,还预先预测了湍流到层状和层流动转变的统计数据,并且讨论了ESN在作为转变过渡的早期预警系统中的效用。这些结果预计将广泛适用于在一系列物理,气候,生物,生态和金融模型中的数据行为建模,其特征在于在几个竞争状态之间存在折射点和突然过渡的存在。
translated by 谷歌翻译
要使用深神经网络预测罕见的极端事件,一个人遇到所谓的小数据问题,因为即使是长期观测通常常见的事件常见。在这里,我们研究了一种模型辅助框架,其中训练数据是从数值模拟获得的,而不是观察,具有来自极端事件的适当样本。但是,为了确保培训的网络在实践中适用,无法在完整的仿真数据上执行培训;相反,我们只使用可以在实践中测量的可观察量的小子集。我们调查这一模型辅助框架在三种不同动力系统(Rossler Larguger Or,Fitzhugh - Nagumo Model和湍流流体流量)和三种不同的深神经网络架构(前馈,长短期内存和储层计算)上的可行性)。在每种情况下,我们研究了预测准确性,稳健性对噪声,重复训练的再现性,以及对输入数据类型的敏感性。特别是,我们发现长期的短期内存网络是最强大的噪声,并产生相对准确的预测,同时需要最小的高考的微调。
translated by 谷歌翻译
这项工作探讨了物理驱动的机器学习技术运算符推理(IMIPF),以预测混乱的动力系统状态。 OPINF提供了一种非侵入性方法来推断缩小空间中多项式操作员的近似值,而无需访问离散模型中出现的完整订单操作员。物理系统的数据集是使用常规数值求解器生成的,然后通过主成分分析(PCA)投影到低维空间。在潜在空间中,设置了一个最小二乘问题以适合二次多项式操作员,该操作员随后在时间整合方案中使用,以便在同一空间中产生外推。解决后,将对逆PCA操作进行重建原始空间中的外推。通过标准化的根平方误差(NRMSE)度量评估了OPINF预测的质量,从中计算有效的预测时间(VPT)。考虑混乱系统Lorenz 96和Kuramoto-Sivashinsky方程的数值实验显示,具有VPT范围的OPINF降低订单模型的有希望的预测能力,这些模型均超过了最先进的机器学习方法,例如返回和储层计算循环新的Neural网络[1 ],以及马尔可夫神经操作员[2]。
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
机器学习方法最近被用作替代品或用于动态系统的物理/数学建模方法的帮助。为了开发一种用于建模和预测多尺度动力学的有效机器学习方法,我们通过使用异质性泄漏积分器(LI)神经元的复发网络提出了具有不同时间尺度的储层计算(RC)模型。我们在两个时间序列的预测任务中评估了所提出模型的计算性能,该任务与四个混乱的快速动力学系统有关。在仅从快速子系统提供输入数据的一步预测任务中,我们表明,所提出的模型比具有相同LI神经元的标准RC模型产生的性能更好。我们的分析表明,通过模型训练,适当,灵活地从储层动力学中选择了产生目标多尺度动力学的每个组件所需的时间尺度。在长期的预测任务中,我们证明了所提出的模型的闭环版本可以实现长期的预测,而与与参数相同的LI神经元相比,它可以实现长期预测。
translated by 谷歌翻译
由有限信号传播速度引起的,许多复杂的系统具有可能诱导高维混沌行为的时间延迟并使预测复杂。这里,我们提出了一种适用于具有任意延迟的系统的物理网络的回声状态网络。在培训网络后,预测具有独特且足够长的延迟的系统,它已经学会了预测所有其他延迟的系统动态。简单地适应网络的拓扑使我们能够推断未训练的功能,例如高维混沌吸引子,分叉甚至多种能力,这些功能较短,延迟较长。因此,延迟系统和数据驱动机器学习的物理知识的融合产生了具有高泛化能力和前所未有的预测精度的模型。
translated by 谷歌翻译
在仅给定国家的数据随着时间的推移数据时,确定系统的基本动力学的问题已经挑战了科学家数十年来的挑战。在本文中,介绍了使用机器学习对相位空间变量的{\ em更新}进行建模的方法;这是作为相空间变量的函数完成的。 (更一般而言,建模是在变量的射流空间上进行的。)该方法被证明可以准确地复制谐波振荡器,摆和Duffing振荡器的示例的动力学;在每个示例中,还可以准确恢复基础微分方程。另外,结果绝不取决于如何随时间(即定期或不规则)对数据进行采样。证明这种方法(称为“ FJET”)类似于runge-kutta(RK)数值集成方案的泰勒级数扩展产生的模型。这个类比赋予了明确揭示在建模中使用的适当功能的优势,并揭示了更新的误差估计。因此,可以将这种新方法视为通过机器学习来确定RK方案系数的一种方式。最后,在未阻尼的谐波振荡器示例中显示,更新的稳定性稳定,$ 10^9美元的$ 10^9美元的稳定性比$ 4 $ ther-ther-ther-ther-tord RK稳定。
translated by 谷歌翻译
预测使用机器学习的高维动力系统的行为需要有效的方法来学习基础物理模型。我们使用机器学习体系结构展示了时空混乱的预测,该架构与下一代储层计算机相结合时,以计算时间$ 10^3-10^4美元的培训过程和培训速度显示最新的性能。数据集$ \ sim 10^2 $ $倍,比其他机器学习算法小。我们还利用该模型的翻译对称性,以进一步降低计算成本和培训数据,每倍$ \ sim $ 10。
translated by 谷歌翻译
在本文中,我们证明了储层计算可用于学习浅水方程的动态。特别地,虽然储层计算的大多数先前的应用已经需要对特定轨迹的训练来说,以进一步预测沿着该轨迹的进化,我们展示了储层计算能力,以预测浅水方程的轨迹,初始条件下没有看到的初始条件培训过程。然而,在该设置中,我们发现网络的性能对于具有与训练数据集中的环境条件(例如总水质高度和平均速度)的初始条件恶化。为了避免这种缺陷,我们引入了一种转移学习方法,其中使用相关环境条件的小额额外训练步骤来改善预测。
translated by 谷歌翻译
在广泛的应用程序中,从观察到的数据中识别隐藏的动态是一项重大且具有挑战性的任务。最近,线性多步法方法(LMM)和深度学习的结合已成功地用于发现动力学,而对这种方法进行完整的收敛分析仍在开发中。在这项工作中,我们考虑了基于网络的深度LMM,以发现动态。我们使用深网的近似属性提出了这些方法的错误估计。它指出,对于某些LMMS的家庭,$ \ ell^2 $网格错误由$ O(H^p)$的总和和网络近似错误,其中$ h $是时间步长和$P $是本地截断错误顺序。提供了几个物理相关示例的数值结果,以证明我们的理论。
translated by 谷歌翻译
我们开发一种方法来构造来自表示基本上非线性(或不可连锁的)动态系统的数据集构成低维预测模型,其中具有由有限许多频率的外部强制进行外部矫正的双曲线线性部分。我们的数据驱动,稀疏,非线性模型获得为低维,吸引动力系统的光谱子纤维(SSM)的降低的动态的延长正常形式。我们说明了数据驱动的SSM降低了高维数值数据集的功率和涉及梁振荡,涡旋脱落和水箱中的晃动的实验测量。我们发现,在未加工的数据上培训的SSM减少也在额外的外部强制下准确预测非线性响应。
translated by 谷歌翻译
众所周知,混乱的系统对预测的挑战是挑战,因为它们对时间的敏感性和由于阶梯时间而引起的错误和错误。尽管这种不可预测的行为,但对于许多耗散系统,长期轨迹的统计数据仍受到一套被称为全球吸引子的不变措施的管辖。对于许多问题,即使状态空间是无限的维度,该集合是有限维度的。对于马尔可夫系统,长期轨迹的统计特性由解决方案操作员唯一确定,该解决方案操作员将系统的演变映射到任意正时间增量上。在这项工作中,我们提出了一个机器学习框架,以学习耗散混沌系统的基础解决方案操作员,这表明所得的学习操作员准确地捕获了短期轨迹和长期统计行为。使用此框架,我们能够预测湍流Kolmogorov流动动力学的各种统计数据,雷诺数为5000。
translated by 谷歌翻译
非线性动力学的现实世界复杂系统的分析和预测在很大程度上取决于替代模型。储层计算机(RC)已被证明可用于复制混沌动力学的气候。基于RCS的替代模型的质量至关重要取决于明智地确定的最佳实现,涉及选择最佳储层拓扑和超参数。通过系统地应用贝叶斯高参数优化并使用各种拓扑的储层集合,我们表明,链接储层的拓扑结构在预测混乱的Lorenz系统的动态方面没有意义。通过模拟,我们表明,未连接的节点的简单储层优于链接的储层作为不同制度中洛伦兹系统的替代模型的链接储层。我们给出了为什么未连接节点的储层具有最大熵,因此是最佳的。我们得出的结论是,RC的性能是基于仅仅是功能转换,而不是通常假定的动力学特性。因此,可以通过在模型中更强烈的动态信息来改进RC。
translated by 谷歌翻译
水库计算机是一种使用高维动力系统进行计算的方式。构建水库计算机的一种方法是通过将一组非线性节点连接到网络中。由于网络在节点之间创建反馈,因此储库计算机具有内存。如果水库计算机是以一致的方式响应输入信号(计算的必要条件),则内存必须衰落;也就是说,初始条件的影响随着时间的推移而淡化。这个记忆持续多长时间很重要,对于确定水库计算机如何解决特定问题。在本文中,我描述了改变储层计算机中衰落内存的长度的方法。调整内存可能很重要,在某些问题中实现最佳结果;记忆力太多或太少的记忆会降低了计算的准确性。
translated by 谷歌翻译
我们建议采用统计回归作为投影操作员,以使数据驱动以数据为基础的Mori-Zwanzig形式主义中的运营商学习。我们提出了一种原则性方法,用于为任何回归模型提取Markov和内存操作员。我们表明,线性回归的选择导致了基于Mori的投影操作员最近提出的数据驱动的学习算法,这是一种高阶近似Koopman学习方法。我们表明,更具表现力的非线性回归模型自然填补了高度理想化和计算有效的MORI投影操作符和最佳迄今为止计算上最佳的Zwanzig投影仪之间的差距。我们进行了数值实验,并提取了一系列基于回归的投影的运算符,包括线性,多项式,样条和基于神经网络的回归,随着回归模型的复杂性的增加而显示出渐进的改进。我们的命题提供了一个通用框架来提取内存依赖性校正,并且可以轻松地应用于文献中固定动力学系统的一系列数据驱动的学习方法。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译