行人轨迹预测是自动驾驶的重要技术,近年来已成为研究热点。以前的方法主要依靠行人的位置关系来模型社交互动,这显然不足以代表实际情况中的复杂病例。此外,大多数现有工作通常通常将场景交互模块作为独立分支介绍,并在轨迹生成过程中嵌入社交交互功能,而不是同时执行社交交互和场景交互,这可能破坏轨迹预测的合理性。在本文中,我们提出了一个名为社会软关注图卷积网络(SSAGCN)的一个新的预测模型,旨在同时处理行人和环境之间的行人和场景相互作用之间的社交互动。详细说明,在建模社交互动时,我们提出了一种新的\ EMPH {社会软关注功能},其充分考虑了行人之间的各种交互因素。并且它可以基于各种情况下的不同因素来区分行人周围的人行力的影响。对于物理互动,我们提出了一个新的\ emph {顺序场景共享机制}。每个时刻在每个时刻对一个代理的影响可以通过社会柔和关注与其他邻居共享,因此场景的影响在空间和时间尺寸中都是扩展。在这些改进的帮助下,我们成功地获得了社会和身体上可接受的预测轨迹。公共可用数据集的实验证明了SSAGCN的有效性,并取得了最先进的结果。
translated by 谷歌翻译
了解代理之间的复杂社交互动是轨迹预测的关键挑战。大多数现有方法考虑成对交通代理或在局域之间的相互作用,而相互作用的性质是无限的,涉及同时不确定的代理和非局部区域。此外,它们对不同类别的代理商来说,它们同样对待异质的交通代理,同时忽视人们在IFFerent类别的交通代理中的多种反应模式。为了解决这些问题,我们提出了一个简单但有效的无限邻域交互网络(UNIN),其预测多个类别中异构代理的轨迹。具体地,所提出的无限邻域交互模块同时产生相互作用涉及的所有代理的融合特征,其适用于任何数量的代理和任何范围的交互区域。同时,提出了一个分层图注意模块,以获取类别到类别的交互和代理到代理交互。最后,估计高斯混合模型的参数用于产生未来轨迹。基准数据集的广泛实验结果表明,通过最先进的方法对我们的方法进行了显着改进。
translated by 谷歌翻译
对于各种现实生活中的应用,例如自动驾驶和机器人运动计划,行人轨迹预测是一项重要且具有挑战性的任务。除了生成一条未来的路径外,预测多个合理的未来路径在最近的一些轨迹预测方面变得流行。但是,现有方法通常强调行人与周边地区之间的空间相互作用,但忽略了预测的平稳性和时间一致性。我们的模型旨在通过建模基于历史轨迹的多路径来预测多个基于图形的空间变压器与使用内存图的轨迹平滑算法相结合的轨迹平滑算法。我们的方法可以全面利用空间信息,并纠正时间上不一致的轨迹(例如,尖锐的转弯)。我们还提出了一个名为“轨迹使用百分比”的新评估度量,以评估各种多未实现预测的全面性。我们的广泛实验表明,所提出的模型在多未来的预测和单一预测的竞争结果上实现了最先进的表现。在https://github.com/jacobieee/st-mr上发布的代码。
translated by 谷歌翻译
在复杂的场景中,尤其是在城市交通交叉点,对实体关系和运动行为的深刻理解对于实现高质量的计划非常重要。我们提出了有关交通信号灯D2-Tpred的轨迹预测方法,该方法使用空间动态交互图(SDG)和行为依赖图(BDG)来处理空间空间中不连续依赖的问题。具体而言,SDG用于通过在每帧中具有动态和可变特征的不同试剂的子图来捕获空间相互作用。 BDG用于通过建模当前状态对先验行为的隐式依赖性来推断运动趋势,尤其是与加速度,减速或转向方向相对应的不连续运动。此外,我们提出了一个新的数据集,用于在称为VTP-TL的交通信号灯下进行车辆轨迹预测。我们的实验结果表明,与其他轨迹预测算法相比,我们的模型在ADE和FDE方面分别获得了{20.45%和20.78%}的改善。数据集和代码可在以下网址获得:https://github.com/vtp-tl/d2-tpred。
translated by 谷歌翻译
预测动态场景中的行人轨迹仍然是各种应用中的关键问题,例如自主驾驶和社会意识的机器人。由于人类和人类对象的相互作用和人类随机性引起的未来不确定性,这种预测是挑战。基于生成式模型的方法通过采样潜在变量来处理未来的不确定性。然而,很少有研究探索了潜在变量的产生。在这项工作中,我们提出了具有伪Oracle(TPPO)的轨迹预测器,这是一种基于模型的基于模型的轨迹预测因子。第一个伪甲骨文是行人的移动方向,第二个是从地面真理轨迹估计的潜在变量。社会注意力模块用于基于行人移动方向与未来轨迹之间的相关性聚集邻居的交互。这种相关性受到行人的未来轨迹往往受到前方行人的影响。提出了一种潜在的变量预测器来估计观察和地面轨迹的潜在可变分布。此外,在训练期间,这两个分布之间的间隙最小化。因此,潜在的变量预测器可以估计观察到的轨迹的潜变量,以近似从地面真理轨迹估计。我们将TPPO与在几个公共数据集上的相关方法进行比较。结果表明,TPPO优于最先进的方法,具有低平均和最终位移误差。作为测试期间的采样时间下降,消融研究表明预测性能不会显着降低。
translated by 谷歌翻译
为了安全和合理地参与密集和异质的交通,自动驾驶汽车需要充分分析周围交通代理的运动模式,并准确预测其未来的轨迹。这是具有挑战性的,因为交通代理的轨迹不仅受交通代理本身的影响,而且还受到彼此的空间互动的影响。以前的方法通常依赖于长期短期存储网络(LSTMS)的顺序逐步处理,并仅提取单型交通代理之间的空间邻居之间的相互作用。我们提出了时空变压器网络(S2TNET),该网络通过时空变压器对时空相互作用进行建模,并通过时间变压器处理颞序序列。我们将其他类别,形状和标题信息输入到我们的网络中,以处理交通代理的异质性。在Apolloscape轨迹数据集上,所提出的方法在平均值和最终位移误差的加权总和上优于Apolloscape轨迹数据集的最先进方法。我们的代码可在https://github.com/chenghuang66/s2tnet上找到。
translated by 谷歌翻译
Motion prediction systems aim to capture the future behavior of traffic scenarios enabling autonomous vehicles to perform safe and efficient planning. The evolution of these scenarios is highly uncertain and depends on the interactions of agents with static and dynamic objects in the scene. GNN-based approaches have recently gained attention as they are well suited to naturally model these interactions. However, one of the main challenges that remains unexplored is how to address the complexity and opacity of these models in order to deal with the transparency requirements for autonomous driving systems, which includes aspects such as interpretability and explainability. In this work, we aim to improve the explainability of motion prediction systems by using different approaches. First, we propose a new Explainable Heterogeneous Graph-based Policy (XHGP) model based on an heterograph representation of the traffic scene and lane-graph traversals, which learns interaction behaviors using object-level and type-level attention. This learned attention provides information about the most important agents and interactions in the scene. Second, we explore this same idea with the explanations provided by GNNExplainer. Third, we apply counterfactual reasoning to provide explanations of selected individual scenarios by exploring the sensitivity of the trained model to changes made to the input data, i.e., masking some elements of the scene, modifying trajectories, and adding or removing dynamic agents. The explainability analysis provided in this paper is a first step towards more transparent and reliable motion prediction systems, important from the perspective of the user, developers and regulatory agencies. The code to reproduce this work is publicly available at https://github.com/sancarlim/Explainable-MP/tree/v1.1.
translated by 谷歌翻译
在智能系统(例如自动驾驶和机器人导航)中,轨迹预测一直是一个长期存在的问题。最近在大规模基准测试的最新模型一直在迅速推动性能的极限,主要集中于提高预测准确性。但是,这些模型对效率的强调较少,这对于实时应用至关重要。本文提出了一个名为Gatraj的基于注意力的图形模型,其预测速度要高得多。代理的时空动力学,例如行人或车辆,是通过注意机制建模的。代理之间的相互作用是通过图卷积网络建模的。我们还实施了拉普拉斯混合物解码器,以减轻模式崩溃,并为每个代理生成多种模式预测。我们的模型以在多个开放数据集上测试的更高预测速度与最先进的模型相同的性能。
translated by 谷歌翻译
建模人行走的动力是对计算机视觉的长期兴趣的问题。许多涉及行人轨迹预测的以前的作品将一组特定的单个动作定义为隐式模型组动作。在本文中,我们介绍了一个名为GP-GRAPH的新颖架构,该架构具有集体的小组表示,用于在拥挤的环境中有效的人行道轨迹预测,并且与所有类型的现有方法兼容。 GP-GRAPH的一个关键思想是将个人和小组关系的关系作为图表表示。为此,GP-Graph首先学会将每个行人分配给最可能的行为组。然后,使用此分配信息,GP编写是图形的组内和组间相互作用,分别考虑了组和群体关系中的人类关系。要具体,对于小组内相互作用,我们掩盖了相关组中的行人图边缘。我们还建议小组合并和不致密操作,以代表一个具有多个行人作为一个图节点的小组。最后,GP-GRAPH从两个组相互作用的综合特征中渗透了一个可获得社会上可接受的未来轨迹的概率图。此外,我们介绍了一个小组潜在的矢量抽样,以确保对一系列可能的未来轨迹的集体推断。进行了广泛的实验来验证我们的体系结构的有效性,该实验证明了通过公开可用的基准测试的绩效一致。代码可在https://github.com/inhwanbae/gpgraph上公开获取。
translated by 谷歌翻译
作为自主驱动系统的核心技术,行人轨迹预测可以显着提高主动车辆安全性的功能,减少道路交通损伤。在交通场景中,当遇到迎面而来的人时,行人可能会立即转动或停止,这通常会导致复杂的轨迹。为了预测这种不可预测的轨迹,我们可以深入了解行人之间的互动。在本文中,我们提出了一种名为Spatial Interaction Transformer(SIT)的新型生成方法,其通过注意机制学习行人轨迹的时空相关性。此外,我们介绍了条件变形Autiachoder(CVAE)框架来模拟未来行人的潜在行动状态。特别是,基于大规模的TRAFC数据集NUSCENES [2]的实验显示,坐下的性能优于最先进的(SOTA)方法。对挑战性的Eth和UCY数据集的实验评估概述了我们提出的模型的稳健性
translated by 谷歌翻译
流量预测在智能运输系统中交通控制和调度任务的实现中起着重要作用。随着数据源的多元化,合理地使用丰富的流量数据来对流量流中复杂的时空依赖性和非线性特征进行建模是智能运输系统的关键挑战。此外,清楚地评估从不同数据中提取的时空特征的重要性成为一个挑战。提出了双层 - 空间时间特征提取和评估(DL -STFEE)模型。 DL-STFEE的下层是时空特征提取层。流量数据中的空间和时间特征是通过多画图卷积和注意机制提取的,并生成了空间和时间特征的不同组合。 DL-STFEE的上层是时空特征评估层。通过高维自我注意力发项机制产生的注意力评分矩阵,空间特征组合被融合和评估,以便获得不同组合对预测效应的影响。在实际的流量数据集上进行了三组实验,以表明DL-STFEE可以有效地捕获时空特征并评估不同时空特征组合的重要性。
translated by 谷歌翻译
在现实世界中,道路使用者的轨迹预测很具有挑战性,因为它们的运动模式是随机且复杂的。以前以行人为导向的作品已经成功地模拟了行人之间的复杂交互作用,但是当涉及其他类型的道路使用者(例如,汽车,骑自行车的人等)时,无法预测轨迹,因为他们忽略了用户类型。尽管最近的一些作品与用户标签信息构建了密集连接的图形,但它们遭受了多余的空间相互作用和时间依赖性。为了解决这些问题,我们提出了多类SGCN,这是一种基于稀疏的图形卷积网络的多级轨迹预测方法,该方法考虑了速度和代理标签信息,并使用新颖的交互掩码来适应基于空间和时间连接的基础。在他们的互动分数上。所提出的方法在斯坦福无人机数据集上大大优于最先进的方法,提供了更现实和合理的轨迹预测。
translated by 谷歌翻译
安全可靠的自主驾驶堆栈(AD)的设计是我们时代最具挑战性的任务之一。预计这些广告将在具有完全自主权的高度动态环境中驱动,并且比人类更大的可靠性。从这个意义上讲,要高效,安全地浏览任意复杂的流量情景,广告必须具有预测周围参与者的未来轨迹的能力。当前的最新模型通常基于复发,图形和卷积网络,在车辆预测的背景下取得了明显的结果。在本文中,我们探讨了在生成模型进行运动预测中注意力的影响,考虑到物理和社会环境以计算最合理的轨迹。我们首先使用LSTM网络对过去的轨迹进行编码,该网络是计算社会背景的多头自我发言模块的输入。另一方面,我们制定了一个加权插值来计算最后一个观测框中的速度和方向,以便计算可接受的目标点,从HDMAP信息的可驱动的HDMAP信息中提取,这代表了我们的物理环境。最后,我们的发电机的输入是从多元正态分布采样的白噪声矢量,而社会和物理环境则是其条件,以预测可行的轨迹。我们使用Argoverse运动预测基准1.1验证我们的方法,从而实现竞争性的单峰结果。
translated by 谷歌翻译
在人群情景中,根据许多外部因素,预测行人的轨迹是一个复杂和具有挑战性的任务。场景的拓扑和行人之间的相互作用只是其中一些。由于数据 - 科学和数据收集技术的进步,深入学习方法最近成为众多域中的研究热点。因此,越来越多的研究人员对预测行人的轨迹应用这些方法并不令人惊讶。本文将这些相对较新的深度学习算法与基于经典知识的模型进行了比较,这些算法被广泛用于模拟行人动态。它为两种方法提供了全面的文献综述,探索了技术和应用面向差异,并解决了未来的问题以及未来的发展方向。我们的调查指出,由于深度学习算法的高准确性,现在,基于知识的模型来预测局部轨迹的内容是可疑的。然而,深度学习算法用于大规模模拟的能力和集体动态的描述仍有待证明。此外,比较表明,两种方法(混合方法)的组合似乎很有希望克服像深度学习方法的缺失解释性等缺点。
translated by 谷歌翻译
准确的交通预测对于智能城市实现交通控制,路线计划和流动检测至关重要。尽管目前提出了许多时空方法,但这些方法在同步捕获流量数据的时空依赖性方面缺陷。此外,大多数方法忽略了随着流量数据的变化而产生的道路网络节点之间的动态变化相关性。我们建议基于神经网络的时空交互式动态图卷积网络(STIDGCN),以应对上述流量预测的挑战。具体而言,我们提出了一个交互式动态图卷积结构,该结构将序列划分为间隔,并通过交互式学习策略同步捕获流量数据的时空依赖性。交互式学习策略使StidGCN有效地预测。我们还提出了一个新颖的动态图卷积模块,以捕获由图生成器和融合图卷积组成的流量网络中动态变化的相关性。动态图卷积模块可以使用输入流量数据和预定义的图形结构来生成图形结构。然后将其与定义的自适应邻接矩阵融合,以生成动态邻接矩阵,该矩阵填充了预定义的图形结构,并模拟了道路网络中节点之间的动态关联的产生。在四个现实世界流量流数据集上进行的广泛实验表明,StidGCN的表现优于最先进的基线。
translated by 谷歌翻译
轨迹预测旨在预测代理商可能的未来位置,考虑到他们的观察以及视频背景。这是许多自主平台所要求的,如跟踪,检测,机器人导航,自动驾驶汽车和许多其他电脑视觉应用。无论是代理人的内部人格因素,与社区的互动行为,还是周围环境的影响,所有这些都可能代表对代理商的未来计划的影响。然而,许多以前的方法模型和预测具有相同策略或“单曲”特征分布的代理商的行为,使其具有挑战性地给出足够的风格差异的预测。该稿件提出了利用风格假设和程式化预测的两个子网的多种式网络(MSN),以共同地以新颖的分类方式提供代理多种准式预测。我们使用代理人的终点计划及其交互上下文作为行为分类的基础,以便通过网络中的一系列样式通道自适应地学习多种不同的行为样式。然后,我们假设目标代理将根据这些分类样式中的每一个规划他们未来的行为,从而利用不同的风格频道,以便并行地提供具有重要风格差异的一系列预测。实验表明,所提出的MSN在两个广泛使用的数据集上以最新的最先进的方法优于10 \%-20 \%,并且定性地提出了更好的多样式特性。
translated by 谷歌翻译
Pedestrians follow different trajectories to avoid obstacles and accommodate fellow pedestrians. Any autonomous vehicle navigating such a scene should be able to foresee the future positions of pedestrians and accordingly adjust its path to avoid collisions. This problem of trajectory prediction can be viewed as a sequence generation task, where we are interested in predicting the future trajectory of people based on their past positions. Following the recent success of Recurrent Neural Network (RNN) models for sequence prediction tasks, we propose an LSTM model which can learn general human movement and predict their future trajectories. This is in contrast to traditional approaches which use hand-crafted functions such as Social forces. We demonstrate the performance of our method on several public datasets. Our model outperforms state-of-the-art methods on some of these datasets . We also analyze the trajectories predicted by our model to demonstrate the motion behaviour learned by our model.
translated by 谷歌翻译
应用强化学习来自动驾驶需要某些挑战,这主要是由于大规模的交通流动,这种挑战是动态变化的。为了应对此类挑战,有必要快速确定对周围车辆不断变化的意图的响应策略。因此,我们提出了一种新的政策优化方法,用于使用基于图的互动感知约束来安全驾驶。在此框架中,运动预测和控制模块是同时训练的,同时共享包含社会环境的潜在表示。此外,为了反映社交互动,我们以图形形式表达了代理的运动并过滤特征。这有助于保留相邻节点的时空位置。此外,我们创建反馈循环以有效地组合这两个模块。结果,这种方法鼓励博学的控制器免受动态风险的侵害,并在各种情况下使运动预测强大。在实验中,我们与城市驾驶模拟器Carla建立了一个包括各种情况的导航场景。该实验表明,与基线相比,导航策略和运动预测的两侧的最新性能。
translated by 谷歌翻译
轨迹预测已在许多领域广泛追求,并且已经探索了许多基于模型和模型的方法。前者包括基于规则的,几何或基于优化的模型,后者主要由深度学习方法组成。在本文中,我们提出了一种基于新的神经微分方程模型的新方法,结合了两种方法。我们的新模型(神经社会物理或NSP)是一个深层神经网络,我们在其中使用具有可学习参数的显式物理模型。显式物理模型在建模行人行为时是强大的感应偏见,而网络的其余部分就系统参数估计和动力学随机性建模提供了强大的数据拟合能力。我们将NSP与6个数据集上的15种深度学习方法进行了比较,并将最新性能提高了5.56%-70%。此外,我们表明NSP在预测截然不同的情况下的合理轨迹方面具有更好的概括性,其中密度的密度是测试数据的2-5倍。最后,我们表明NSP中的物理模型可以为行人行为提供合理的解释,而不是黑盒深度学习。可用代码:https://github.com/realcrane/human-trajectory-prediction-via-noral-social-physics。
translated by 谷歌翻译
轨迹预测和行为决策是自动驾驶汽车的两项重要任务,他们需要对环境环境有良好的了解;通过参考轨迹预测的输出,可以更好地做出行为决策。但是,大多数当前解决方案分别执行这两个任务。因此,提出了结合多个线索的联合神经网络,并将其命名为整体变压器,以预测轨迹并同时做出行为决策。为了更好地探索线索之间的内在关系,网络使用现有知识并采用三种注意力机制:稀疏的多头类型用于减少噪声影响,特征选择稀疏类型,可最佳地使用部分先验知识,并与Sigmoid多头激活类型,用于最佳使用后验知识。与其他轨迹预测模型相比,所提出的模型具有更好的综合性能和良好的解释性。感知噪声稳健性实验表明,所提出的模型具有良好的噪声稳健性。因此,结合多个提示的同时轨迹预测和行为决策可以降低计算成本并增强场景与代理之间的语义关系。
translated by 谷歌翻译