最近的基于学习的初始化算法已经达到了在删除视频中的不期望的对象之后完成缺失区域的令人信服的结果。为了保持帧之间的时间一致性,3D空间和时间操作通常在深网络中使用。但是,这些方法通常遭受内存约束,只能处理低分辨率视频。我们提出了一种用于高分辨率视频侵略的新型空间剩余聚集框架。关键的想法是首先在下采样的低分辨率视频上学习和应用空间和时间内染色网络。然后,我们通过将学习的空间和时间图像残差(细节)聚合到上采样的染色帧来细化低分辨率结果。定量和定性评估都表明,我们可以生产出比确定高分辨率视频的最先进的方法产生更多的时间相干和视觉上吸引力。
translated by 谷歌翻译
本文提出了一种新颖的视频介绍方法。我们做出了三个主要贡献:首先,我们通过引入基于贴片的同型(DEPTH)扩展了以前的变压器,以补丁的对齐方式扩展了贴片对齐,该均值(DEPTH)改善了补丁级的功能对齐,而没有其他有各种变形的监督和受益的挑战场景。其次,我们引入了基于面膜修剪的贴片注意力(MPPA),以通过修剪较少的基本功能和使用显着性图来改善贴合的功能匹配。MPPA用无效的像素增强了扭曲令牌之间的匹配精度。第三,我们引入了空间加权适配器(STA)模块,以在从深度中学到的变形因子的指导下,准确地关注空间代币,尤其是对于具有敏捷运动的视频。实验结果表明,我们的方法在定性和定量上优于最新方法,并实现了新的最新方法。
translated by 谷歌翻译
视频介绍的关键是使用尽可能多的参考帧中的相关信息。现有基于流的传播方法将视频合成过程分为多个步骤:流程完成 - >像素传播 - >综合。但是,存在一个很大的缺点,即每个步骤中的错误继续在下一步中积累和放大。为此,我们为流提供的视频介绍(ECFVI)提出了一个错误补偿框架,该框架利用基于流的方法并抵消了其弱点。我们通过新设计的流程完成模块和利用错误指南图的错误补偿网络来解决弱点。我们的方法极大地提高了时间的一致性和完整视频的视觉质量。实验结果表明,与最先进的方法相比,我们提出的方法的卓越性能随X6的速度提高了。此外,我们通过补充现有测试数据集的弱点来提出一个新的基准数据集,以评估。
translated by 谷歌翻译
Figure 1: Example inpainting results of our method on images of natural scene, face and texture. Missing regions are shown in white. In each pair, the left is input image and right is the direct output of our trained generative neural networks without any post-processing.
translated by 谷歌翻译
视频框架合成由插值和外推组成,是一种必不可少的视频处理技术,可应用于各种情况。但是,大多数现有方法无法处理小物体或大型运动,尤其是在高分辨率视频(例如4K视频)中。为了消除此类局限性,我们引入了基于流动帧合成的邻居对应匹配(NCM)算法。由于当前的帧在视频框架合成中不可用,因此NCM以当前框架的方式进行,以在每个像素的空间型社区中建立多尺度对应关系。基于NCM的强大运动表示能力,我们进一步建议在异质的粗到细节方案中估算框架合成的中间流。具体而言,粗尺度模块旨在利用邻居的对应关系来捕获大型运动,而细尺度模块在计算上更有效地加快了估计过程。两个模块都经过逐步训练,以消除培训数据集和现实世界视频之间的分辨率差距。实验结果表明,NCM在多个基准测试中实现了最先进的性能。此外,NCM可以应用于各种实践场景,例如视频压缩,以实现更好的性能。
translated by 谷歌翻译
尽管深度学习使图像介绍方面取得了巨大的飞跃,但当前的方法通常无法综合现实的高频细节。在本文中,我们建议将超分辨率应用于粗糙的重建输出,以高分辨率进行精炼,然后将输出降低到原始分辨率。通过将高分辨率图像引入改进网络,我们的框架能够重建更多的细节,这些细节通常由于光谱偏置而被平滑 - 神经网络倾向于比高频更好地重建低频。为了协助培训大型高度孔洞的改进网络,我们提出了一种渐进的学习技术,其中缺失区域的大小随着培训的进行而增加。我们的缩放,完善和缩放策略,结合了高分辨率的监督和渐进学习,构成了一种框架 - 不合时宜的方法,用于增强高频细节,可应用于任何基于CNN的涂层方法。我们提供定性和定量评估以及消融分析,以显示我们方法的有效性。这种看似简单但功能强大的方法优于最先进的介绍方法。我们的代码可在https://github.com/google/zoom-to-inpaint中找到
translated by 谷歌翻译
本文回顾了关于压缩视频质量增强质量的第一个NTIRE挑战,重点是拟议的方法和结果。在此挑战中,采用了新的大型不同视频(LDV)数据集。挑战有三个曲目。Track 1和2的目标是增强HEVC在固定QP上压缩的视频,而Track 3旨在增强X265压缩的视频,以固定的位速率压缩。此外,轨道1和3的质量提高了提高保真度(PSNR)的目标,以及提高感知质量的2个目标。这三个曲目完全吸引了482个注册。在测试阶段,分别提交了12个团队,8支球队和11支球队,分别提交了轨道1、2和3的最终结果。拟议的方法和解决方案衡量视频质量增强的最先进。挑战的首页:https://github.com/renyang-home/ntire21_venh
translated by 谷歌翻译
视频通常将流和连续的视觉数据记录为离散的连续帧。由于存储成本对于高保真度的视频来说是昂贵的,因此大多数存储以相对较低的分辨率和帧速率存储。最新的时空视频超分辨率(STVSR)的工作是开发出来的,以将时间插值和空间超分辨率纳入统一框架。但是,其中大多数仅支持固定的上采样量表,这限制了其灵活性和应用。在这项工作中,我们没有遵循离散表示,我们提出了视频隐式神经表示(videoinr),并显示了其对STVSR的应用。学到的隐式神经表示可以解码为任意空间分辨率和帧速率的视频。我们表明,Videoinr在常见的上采样量表上使用最先进的STVSR方法实现了竞争性能,并且在连续和训练的分布量表上显着优于先前的作品。我们的项目页面位于http://zeyuan-chen.com/videoinr/。
translated by 谷歌翻译
深度学习方法在图像染色中优于传统方法。为了生成上下文纹理,研究人员仍在努力改进现有方法,并提出可以提取,传播和重建类似于地面真实区域的特征的模型。此外,更深层的缺乏高质量的特征传递机制有助于对所产生的染色区域有助于持久的像差。为了解决这些限制,我们提出了V-Linknet跨空间学习策略网络。为了改善语境化功能的学习,我们设计了一种使用两个编码器的损失模型。此外,我们提出了递归残留过渡层(RSTL)。 RSTL提取高电平语义信息并将其传播为下层。最后,我们将在与不同面具的同一面孔和不同面部面上的相同面上进行了比较的措施。为了提高图像修复再现性,我们提出了一种标准协议来克服各种掩模和图像的偏差。我们使用实验方法调查V-LinkNet组件。当使用标准协议时,在Celeba-HQ上评估时,我们的结果超越了现有技术。此外,我们的模型可以在Paris Street View上评估时概括良好,以及具有标准协议的Parume2数据集。
translated by 谷歌翻译
Motion blur from camera shake is a major problem in videos captured by hand-held devices. Unlike single-image deblurring, video-based approaches can take advantage of the abundant information that exists across neighboring frames. As a result the best performing methods rely on the alignment of nearby frames. However, aligning images is a computationally expensive and fragile procedure, and methods that aggregate information must therefore be able to identify which regions have been accurately aligned and which have not, a task that requires high level scene understanding. In this work, we introduce a deep learning solution to video deblurring, where a CNN is trained end-toend to learn how to accumulate information across frames. To train this network, we collected a dataset of real videos recorded with a high frame rate camera, which we use to generate synthetic motion blur for supervision. We show that the features learned from this dataset extend to deblurring motion blur that arises due to camera shake in a wide range of videos, and compare the quality of results to a number of other baselines 1 .
translated by 谷歌翻译
我们提出了一种称为基于DNN的基于DNN的框架,称为基于增强的相关匹配的视频帧插值网络,以支持4K的高分辨率,其具有大规模的运动和遮挡。考虑到根据分辨率的网络模型的可扩展性,所提出的方案采用经常性金字塔架构,该架构分享每个金字塔层之间的参数进行光学流量估计。在所提出的流程估计中,通过追踪具有最大相关性的位置来递归地改进光学流。基于前扭曲的相关匹配可以通过排除遮挡区域周围的错误扭曲特征来提高流量更新的准确性。基于最终双向流动,使用翘曲和混合网络合成任意时间位置的中间帧,通过细化网络进一步改善。实验结果表明,所提出的方案在4K视频数据和低分辨率基准数据集中占据了之前的工作,以及具有最小型号参数的客观和主观质量。
translated by 谷歌翻译
动态对象对机器人对环境的看法产生了重大影响,这降低了本地化和映射等基本任务的性能。在这项工作中,我们通过在由动态对象封闭的区域中合成合理的颜色,纹理和几何形状来解决这个问题。我们提出了一种新的几何感知Dynafill架构,其遵循粗略拓扑,并将我们所通用的经常性反馈机制结合到自适应地融合来自之前的时间步来的信息。我们使用对抗性培训来优化架构,以综合精细的现实纹理,使其能够以空间和时间相干的方式在线在线遮挡地区的幻觉和深度结构,而不依赖于未来的帧信息。将我们的待遇问题作为图像到图像到图像的翻译任务,我们的模型还纠正了与场景中动态对象的存在相关的区域,例如阴影或反射。我们引入了具有RGB-D图像,语义分段标签,摄像机的大型高估数据集,以及遮挡区域的地面RGB-D信息。广泛的定量和定性评估表明,即使在挑战天气条件下,我们的方法也能实现最先进的性能。此外,我们使用综合图像显示基于检索的视觉本地化的结果,该图像证明了我们方法的效用。
translated by 谷歌翻译
尽管运动补偿大大提高了视频质量,但单独执行运动补偿和视频脱张需要大量的计算开销。本文提出了一个实时视频Deblurring框架,该框架由轻巧的多任务单元组成,该单元以有效的方式支持视频脱张和运动补偿。多任务单元是专门设计的,用于使用单个共享网络处理两个任务的大部分,并由多任务详细网络和简单的网络组成,用于消除和运动补偿。多任务单元最大程度地减少了将运动补偿纳入视频Deblurring的成本,并实现了实时脱毛。此外,通过堆叠多个多任务单元,我们的框架在成本和过度质量之间提供了灵活的控制。我们通过实验性地验证了方法的最先进的质量,与以前的方法相比,该方法的运行速度要快得多,并显示了实时的实时性能(在DVD数据集中测量了30.99db@30fps)。
translated by 谷歌翻译
We address the problem of synthesizing new video frames in an existing video, either in-between existing frames (interpolation), or subsequent to them (extrapolation). This problem is challenging because video appearance and motion can be highly complex. Traditional optical-flow-based solutions often fail where flow estimation is challenging, while newer neural-network-based methods that hallucinate pixel values directly often produce blurry results. We combine the advantages of these two methods by training a deep network that learns to synthesize video frames by flowing pixel values from existing ones, which we call deep voxel flow. Our method requires no human supervision, and any video can be used as training data by dropping, and then learning to predict, existing frames. The technique is efficient, and can be applied at any video resolution. We demonstrate that our method produces results that both quantitatively and qualitatively improve upon the state-ofthe-art.
translated by 谷歌翻译
高速,高分辨率的立体视频(H2-STEREO)视频使我们能够在细粒度上感知动态3D内容。然而,对商品摄像机的收购H2-STEREO视频仍然具有挑战性。现有的空间超分辨率或时间框架插值方法分别提供了缺乏时间或空间细节的折衷解决方案。为了减轻这个问题,我们提出了一个双摄像头系统,其中一台相机捕获具有丰富空间细节的高空间分辨率低框架速率(HSR-LFR)视频,而另一个摄像头则捕获了低空间分辨率的高架框架-Rate(LSR-HFR)视频带有光滑的时间细节。然后,我们设计了一个学习的信息融合网络(LIFNET),该网络利用跨摄像机冗余,以增强两种相机视图,从而有效地重建H2-STEREO视频。即使在大型差异场景中,我们也利用一个差异网络将时空信息传输到视图上,基于该视图,我们建议使用差异引导的LSR-HFR视图基于差异引导的流量扭曲,并针对HSR-LFR视图进行互补的扭曲。提出了特征域中的多尺度融合方法,以最大程度地减少HSR-LFR视图中闭塞引起的翘曲幽灵和孔。 LIFNET使用YouTube收集的高质量立体视频数据集以端到端的方式进行训练。广泛的实验表明,对于合成数据和摄像头捕获的真实数据,我们的模型均优于现有的最新方法。消融研究探讨了各个方面,包括时空分辨率,摄像头基线,摄像头解理,长/短曝光和应用程序,以充分了解其对潜在应用的能力。
translated by 谷歌翻译
本文介绍了一个名为DTVNet的新型端到端动态时间流逝视频生成框架,以从归一化运动向量上的单个景观图像生成多样化的延期视频。所提出的DTVNET由两个子模块组成:\ EMPH {光学流编码器}(OFE)和\ EMPH {动态视频生成器}(DVG)。 OFE将一系列光学流程图映射到编码所生成视频的运动信息的\ Emph {归一化运动向量}。 DVG包含来自运动矢量和单个景观图像的运动和内容流。此外,它包含一个编码器,用于学习共享内容特征和解码器,以构造具有相应运动的视频帧。具体地,\ EMPH {运动流}介绍多个\ EMPH {自适应实例归一化}(Adain)层,以集成用于控制对象运动的多级运动信息。在测试阶段,基于仅一个输入图像,可以产生具有相同内容但具有相同运动信息但各种运动信息的视频。此外,我们提出了一个高分辨率的景区时间流逝视频数据集,命名为快速天空时间,以评估不同的方法,可以被视为高质量景观图像和视频生成任务的新基准。我们进一步对天空延时,海滩和快速天空数据集进行实验。结果证明了我们对最先进的方法产生高质量和各种动态视频的方法的优越性。
translated by 谷歌翻译
图像介入是将图像的掩盖或未知区域填充具有视觉上现实内容的任务,最近,深层神经网络(DNNS)极大地改善了图像。从本质上讲,作为一个反问题,内部介绍面临着在没有纹理伪像的情况下重建语义相干结果的根本挑战。以前的许多努力是通过利用注意机制和先验知识(例如边缘和语义分割)做出的。但是,这些作品在实践中仍然受到可学习的先验参数和刺激性计算负担的限制。为此,我们提出了一个新颖的模型 - 轴向镶嵌网络(WAIN)中的小波事先注意学习,其发电机包含编码器,解码器以及小波图像的两个关键组件先验注意力(WPA)和堆叠的多层层轴向转化器(ATS)。特别是,WPA指导多尺度频域中的高级特征聚集,从而减轻了文本伪像。堆叠的ATS采用未掩盖的线索来帮助建模合理的功能以及水平和垂直轴的低级特征,从而提高语义连贯性。对Celeba-HQ和Place2数据集进行了广泛的定量和定性实验,以验证我们的Wain可以在竞争对手上实现最新的性能。代码和模型将发布。
translated by 谷歌翻译
最近的研究表明,在介绍问题中建模长期相互作用的重要性。为了实现这一目标,现有方法利用独立的注意技术或变压器,但考虑到计算成本,通常在低分辨率下。在本文中,我们提出了一个基于变压器的新型模型,用于大孔介入,该模型统一了变压器和卷积的优点,以有效地处理高分辨率图像。我们仔细设计框架的每个组件,以确保恢复图像的高保真度和多样性。具体而言,我们自定义了一个面向内部的变压器块,其中注意模块仅从部分有效令牌中汇总非本地信息,该信息由动态掩码表示。广泛的实验证明了在多个基准数据集上新模型的最新性能。代码在https://github.com/fenglinglwb/mat上发布。
translated by 谷歌翻译
基于补丁的方法和深度网络已经采用了解决图像染色问题,具有自己的优势和劣势。基于补丁的方法能够通过从未遮盖区域搜索最近的邻居修补程序来恢复具有高质量纹理的缺失区域。但是,这些方法在恢复大缺失区域时会带来问题内容。另一方面,深度网络显示有希望的成果完成大区域。尽管如此,结果往往缺乏类似周围地区的忠诚和尖锐的细节。通过汇集两个范式中,我们提出了一种新的深度染色框架,其中纹理生成是由从未掩蔽区域提取的补丁样本的纹理记忆引导的。该框架具有一种新颖的设计,允许使用深度修复网络训练纹理存储器检索。此外,我们还介绍了贴片分配损失,以鼓励高质量的贴片合成。所提出的方法在三个具有挑战性的图像基准测试中,即地位,Celeba-HQ和巴黎街道视图数据集来说,该方法显示出质量和定量的卓越性能。
translated by 谷歌翻译
Most existing image inpainting algorithms are based on a single view, struggling with large holes or the holes containing complicated scenes. Some reference-guided algorithms fill the hole by referring to another viewpoint image and use 2D image alignment. Due to the camera imaging process, simple 2D transformation is difficult to achieve a satisfactory result. In this paper, we propose 3DFill, a simple and efficient method for reference-guided image inpainting. Given a target image with arbitrary hole regions and a reference image from another viewpoint, the 3DFill first aligns the two images by a two-stage method: 3D projection + 2D transformation, which has better results than 2D image alignment. The 3D projection is an overall alignment between images and the 2D transformation is a local alignment focused on the hole region. The entire process of image alignment is self-supervised. We then fill the hole in the target image with the contents of the aligned image. Finally, we use a conditional generation network to refine the filled image to obtain the inpainting result. 3DFill achieves state-of-the-art performance on image inpainting across a variety of wide view shifts and has a faster inference speed than other inpainting models.
translated by 谷歌翻译