Motion blur from camera shake is a major problem in videos captured by hand-held devices. Unlike single-image deblurring, video-based approaches can take advantage of the abundant information that exists across neighboring frames. As a result the best performing methods rely on the alignment of nearby frames. However, aligning images is a computationally expensive and fragile procedure, and methods that aggregate information must therefore be able to identify which regions have been accurately aligned and which have not, a task that requires high level scene understanding. In this work, we introduce a deep learning solution to video deblurring, where a CNN is trained end-toend to learn how to accumulate information across frames. To train this network, we collected a dataset of real videos recorded with a high frame rate camera, which we use to generate synthetic motion blur for supervision. We show that the features learned from this dataset extend to deblurring motion blur that arises due to camera shake in a wide range of videos, and compare the quality of results to a number of other baselines 1 .
translated by 谷歌翻译
尽管运动补偿大大提高了视频质量,但单独执行运动补偿和视频脱张需要大量的计算开销。本文提出了一个实时视频Deblurring框架,该框架由轻巧的多任务单元组成,该单元以有效的方式支持视频脱张和运动补偿。多任务单元是专门设计的,用于使用单个共享网络处理两个任务的大部分,并由多任务详细网络和简单的网络组成,用于消除和运动补偿。多任务单元最大程度地减少了将运动补偿纳入视频Deblurring的成本,并实现了实时脱毛。此外,通过堆叠多个多任务单元,我们的框架在成本和过度质量之间提供了灵活的控制。我们通过实验性地验证了方法的最先进的质量,与以前的方法相比,该方法的运行速度要快得多,并显示了实时的实时性能(在DVD数据集中测量了30.99db@30fps)。
translated by 谷歌翻译
视频框架插值(VFI)实现了许多可能涉及时间域的重要应用程序,例如慢运动播放或空间域,例如停止运动序列。我们专注于以前的任务,其中关键挑战之一是在存在复杂运动的情况下处理高动态范围(HDR)场景。为此,我们探索了双曝光传感器的可能优势,这些传感器很容易提供尖锐的短而模糊的长曝光,这些曝光是空间注册并在时间上对齐的两端。这样,运动模糊会在场景运动上暂时连续的信息,这些信息与尖锐的参考结合在一起,可以在单个相机拍摄中进行更精确的运动采样。我们证明,这促进了VFI任务中更复杂的运动重建以及HDR框架重建,迄今为止仅考虑到最初被捕获的框架,而不是插值之间的框架。我们设计了一个在这些任务中训练的神经网络,这些神经网络明显优于现有解决方案。我们还提出了一个场景运动复杂性的度量,该指标在测试时间提供了对VFI方法的性能的重要见解。
translated by 谷歌翻译
快速移动受试者的运动模糊是摄影中的一个长期问题,由于收集效率有限,尤其是在弱光条件下,在手机上非常常见。尽管近年来我们目睹了图像脱毛的巨大进展,但大多数方法都需要显着的计算能力,并且在处理高分辨率照片的情况下具有严重的局部动作。为此,我们根据手机的双摄像头融合技术开发了一种新颖的面部脱毛系统。该系统检测到主题运动以动态启用参考摄像头,例如,最近在高级手机上通常可用的Ultrawide Angle摄像机,并捕获带有更快快门设置的辅助照片。虽然主镜头是低噪音但模糊的,但参考镜头却很锋利,但嘈杂。我们学习ML模型,以对齐和融合这两张镜头,并在没有运动模糊的情况下输出清晰的照片。我们的算法在Google Pixel 6上有效运行,每次拍摄需要463毫秒的开销。我们的实验证明了系统对替代单片,多帧,面部特异性和视频脱张算法以及商业产品的优势和鲁棒性。据我们所知,我们的工作是第一个用于面部运动脱毛的移动解决方案,在各种运动和照明条件下,在数千个图像中可靠地工作。
translated by 谷歌翻译
高速,高分辨率的立体视频(H2-STEREO)视频使我们能够在细粒度上感知动态3D内容。然而,对商品摄像机的收购H2-STEREO视频仍然具有挑战性。现有的空间超分辨率或时间框架插值方法分别提供了缺乏时间或空间细节的折衷解决方案。为了减轻这个问题,我们提出了一个双摄像头系统,其中一台相机捕获具有丰富空间细节的高空间分辨率低框架速率(HSR-LFR)视频,而另一个摄像头则捕获了低空间分辨率的高架框架-Rate(LSR-HFR)视频带有光滑的时间细节。然后,我们设计了一个学习的信息融合网络(LIFNET),该网络利用跨摄像机冗余,以增强两种相机视图,从而有效地重建H2-STEREO视频。即使在大型差异场景中,我们也利用一个差异网络将时空信息传输到视图上,基于该视图,我们建议使用差异引导的LSR-HFR视图基于差异引导的流量扭曲,并针对HSR-LFR视图进行互补的扭曲。提出了特征域中的多尺度融合方法,以最大程度地减少HSR-LFR视图中闭塞引起的翘曲幽灵和孔。 LIFNET使用YouTube收集的高质量立体视频数据集以端到端的方式进行训练。广泛的实验表明,对于合成数据和摄像头捕获的真实数据,我们的模型均优于现有的最新方法。消融研究探讨了各个方面,包括时空分辨率,摄像头基线,摄像头解理,长/短曝光和应用程序,以充分了解其对潜在应用的能力。
translated by 谷歌翻译
本文旨在探讨如何合成对其进行训练的现有视频脱毛模型的近距离模糊,可以很好地推广到现实世界中的模糊视频。近年来,基于深度学习的方法已在视频Deblurring任务上取得了希望的成功。但是,对现有合成数据集培训的模型仍然遭受了与现实世界中的模糊场景的概括问题。造成故障的因素仍然未知。因此,我们重新审视经典的模糊综合管道,并找出可能的原因,包括拍摄参数,模糊形成空间和图像信号处理器〜(ISP)。为了分析这些潜在因素的效果,我们首先收集一个超高帧速率(940 fps)原始视频数据集作为数据基础,以综合各种模糊。然后,我们提出了一种新颖的现实模糊合成管道,该管道通过利用模糊形成线索称为原始爆炸。通过大量实验,我们证明了在原始空间中的合成模糊并采用与现实世界测试数据相同的ISP可以有效消除合成数据的负面影响。此外,合成的模糊视频的拍摄参数,例如,曝光时间和框架速率在改善脱毛模型的性能中起着重要作用。令人印象深刻的是,与在现有合成模糊数据集中训练的训练的模型合成的模糊数据训练的模型可以获得超过5DB PSNR的增益。我们认为,新颖的现实合成管道和相应的原始视频数据集可以帮助社区轻松构建自定义的Blur数据集,以改善现实世界的视频DeBlurring性能,而不是费力地收集真实的数据对。
translated by 谷歌翻译
Given two consecutive frames, video interpolation aims at generating intermediate frame(s) to form both spatially and temporally coherent video sequences. While most existing methods focus on single-frame interpolation, we propose an end-to-end convolutional neural network for variable-length multi-frame video interpolation, where the motion interpretation and occlusion reasoning are jointly modeled. We start by computing bi-directional optical flow between the input images using a U-Net architecture. These flows are then linearly combined at each time step to approximate the intermediate bi-directional optical flows. These approximate flows, however, only work well in locally smooth regions and produce artifacts around motion boundaries. To address this shortcoming, we employ another U-Net to refine the approximated flow and also predict soft visibility maps. Finally, the two input images are warped and linearly fused to form each intermediate frame. By applying the visibility maps to the warped images before fusion, we exclude the contribution of occluded pixels to the interpolated intermediate frame to avoid artifacts. Since none of our learned network parameters are time-dependent, our approach is able to produce as many intermediate frames as needed. To train our network, we use 1,132 240-fps video clips, containing 300K individual video frames. Experimental results on several datasets, predicting different numbers of interpolated frames, demonstrate that our approach performs consistently better than existing methods.
translated by 谷歌翻译
Non-uniform blind deblurring for general dynamic scenes is a challenging computer vision problem as blurs arise not only from multiple object motions but also from camera shake, scene depth variation. To remove these complicated motion blurs, conventional energy optimization based methods rely on simple assumptions such that blur kernel is partially uniform or locally linear. Moreover, recent machine learning based methods also depend on synthetic blur datasets generated under these assumptions. This makes conventional deblurring methods fail to remove blurs where blur kernel is difficult to approximate or parameterize (e.g. object motion boundaries). In this work, we propose a multi-scale convolutional neural network that restores sharp images in an end-to-end manner where blur is caused by various sources. Together, we present multiscale loss function that mimics conventional coarse-to-fine approaches. Furthermore, we propose a new large-scale dataset that provides pairs of realistic blurry image and the corresponding ground truth sharp image that are obtained by a high-speed camera. With the proposed model trained on this dataset, we demonstrate empirically that our method achieves the state-of-the-art performance in dynamic scene deblurring not only qualitatively, but also quantitatively.
translated by 谷歌翻译
We address the problem of synthesizing new video frames in an existing video, either in-between existing frames (interpolation), or subsequent to them (extrapolation). This problem is challenging because video appearance and motion can be highly complex. Traditional optical-flow-based solutions often fail where flow estimation is challenging, while newer neural-network-based methods that hallucinate pixel values directly often produce blurry results. We combine the advantages of these two methods by training a deep network that learns to synthesize video frames by flowing pixel values from existing ones, which we call deep voxel flow. Our method requires no human supervision, and any video can be used as training data by dropping, and then learning to predict, existing frames. The technique is efficient, and can be applied at any video resolution. We demonstrate that our method produces results that both quantitatively and qualitatively improve upon the state-ofthe-art.
translated by 谷歌翻译
使用致动万向节的机械图像稳定使得能够捕获长曝光镜头而不会因相机运动而遭受模糊。然而,这些装置通常是物理上繁琐和昂贵的,限制了他们广泛的使用。在这项工作中,我们建议通过输入快速未稳定的相机的输入来数字化地模拟机械稳定的系统。在短曝光的长曝光和低SNR处开发运动模糊之间的折衷,我们通过聚集由未知运动相关的嘈杂短曝光框架来培训估计尖锐的高SNR图像的CNN。我们进一步建议以端到端的方式学习突发的曝光时间,从而平衡噪声和模糊穿过框架。我们展示了这种方法,通过传统的去掩盖单个图像或在合成和实际数据上去除固定曝光突发的传统方法的优势。
translated by 谷歌翻译
滚动快门(RS)失真可以解释为在RS摄像机曝光期间,随着时间的推移从瞬时全局快门(GS)框架中挑选一排像素。这意味着每个即时GS帧的信息部分,依次是嵌入到行依赖性失真中。受到这一事实的启发,我们解决了扭转这一过程的挑战性任务,即从rs失真中的图像中提取未变形的GS框架。但是,由于RS失真与其他因素相结合,例如读数设置以及场景元素与相机的相对速度,因此仅利用临时相邻图像之间的几何相关性的型号,在处理数据中,具有不同的读数设置和动态场景的数据中遭受了不良的通用性。带有相机运动和物体运动。在本文中,我们建议使用双重RS摄像机捕获的一对图像,而不是连续的框架,而RS摄像机则具有相反的RS方向,以完成这项极具挑战性的任务。基于双重反转失真的对称和互补性,我们开发了一种新型的端到端模型,即IFED,以通过卢比时间对速度场的迭代学习来生成双重光流序列。广泛的实验结果表明,IFED优于天真的级联方案,以及利用相邻RS图像的最新艺术品。最重要的是,尽管它在合成数据集上进行了训练,但显示出在从现实世界中的RS扭曲的动态场景图像中检索GS框架序列有效。代码可在https://github.com/zzh-tech/dual-versed-rs上找到。
translated by 谷歌翻译
高动态范围(HDR)成像是一种允许广泛的动态曝光范围的技术,这在图像处理,计算机图形和计算机视觉中很重要。近年来,使用深度学习(DL),HDR成像有重大进展。本研究对深层HDR成像方法的最新发展进行了综合和富有洞察力的调查和分析。在分层和结构上,将现有的深层HDR成像方法基于(1)输入曝光的数量/域,(2)学习任务数,(3)新传感器数据,(4)新的学习策略,(5)应用程序。重要的是,我们对关于其潜在和挑战的每个类别提供建设性的讨论。此外,我们审查了深度HDR成像的一些关键方面,例如数据集和评估指标。最后,我们突出了一些打开的问题,并指出了未来的研究方向。
translated by 谷歌翻译
由于大气湍流的扭曲而恢复图像是一个长期存在的问题,这是由于变形的空间变化,图像形成过程的非线性以及训练和测试数据的稀缺性。现有方法通常在失真模型上具有强大的统计假设,在许多情况下,由于没有概括,因此在现实世界中的性能有限。为了克服挑战,本文提出了一种端到端物理驱动的方法,该方法有效,可以推广到现实世界的湍流。在数据合成方面,我们通过通过宽sense式的平稳性近似随机场来显着增加SOTA湍流模拟器可以处理的图像分辨率。新的数据合成过程使大规模的多级湍流和训练的地面真相对产生。在网络设计方面,我们提出了湍流缓解变压器(TMT),这是一个两级U-NET形状的多帧恢复网络,该网络具有Noval有效的自发机制,称为暂时通道关节关注(TCJA)。我们还引入了一种新的培训方案,该方案由新的模拟器启用,并设计新的变压器单元以减少内存消耗。在静态场景和动态场景上的实验结果是有希望的,包括各种真实的湍流场景。
translated by 谷歌翻译
高动态范围(HDR)视频提供比标准低动态范围(LDR)视频更具视觉上的体验。尽管HDR成像具有重要进展,但仍有一个具有挑战性的任务,可以使用传统的现成摄像头捕获高质量的HDR视频。现有方法完全依赖于在相邻的LDR序列之间使用致密光流来重建HDR帧。然而,当用嘈杂的框架应用于交替的曝光时,它们会导致颜色和暴露的曝光不一致。在本文中,我们提出了一种从LDR序列与交替曝光的LDR序列的HDR视频重建的端到端GAN框架。我们首先从Noisy LDR视频中提取清洁LDR帧,并具有在自我监督设置中培训的去噪网络的交替曝光。然后,我们将相邻的交流帧与参考帧对齐,然后在完全的对手设置中重建高质量的HDR帧。为了进一步提高所产生帧的鲁棒性和质量,我们在培训过程中将时间稳定性的正则化术语与成本函数的内容和风格的损耗一起融合。实验结果表明,我们的框架实现了最先进的性能,并通过现有方法生成视频的优质HDR帧。
translated by 谷歌翻译
的状态的最先进的视频去模糊方法的成功主要源于潜伏视频恢复相邻帧之间的对准隐式或显式的估计。然而,由于模糊效果的影响,估计从所述模糊的相邻帧的对准信息是不是一个简单的任务。不准确的估计将干扰随后的帧的恢复。相反,估计比对信息,我们提出了一个简单而有效的深层递归神经网络与多尺度双向传播(RNN-MBP),有效传播和收集未对齐的相邻帧的信息,更好的视频去模糊。具体来说,我们建立与这可以通过在不同的尺度整合他们直接利用从非对齐相邻隐藏状态帧间信息的两个U形网RNN细胞多尺度双向传播〜(MBP)模块。此外,为了更好地评估算法和国家的最先进的存在于现实世界的模糊场景的方法,我们也通过一个精心设计的数字视频采集系统创建一个真实世界的模糊视频数据集(RBVD)(的DVA)并把它作为训练和评估数据集。大量的实验结果表明,该RBVD数据集有效地提高了对现实世界的模糊的视频现有算法的性能,并且算法进行从优对三个典型基准的国家的最先进的方法。该代码可在https://github.com/XJTU-CVLAB-LOWLEVEL/RNN-MBP。
translated by 谷歌翻译
高动态范围(HDR)成像在现代数字摄影管道中具有根本重要性,并且尽管在图像上变化照明,但仍用于生产具有良好暴露区域的高质量照片。这通常通过在不同曝光时拍摄多个低动态范围(LDR)图像来实现。然而,由于补偿不良的运动导致人工制品如重影,过度暴露的地区和未对准误差。在本文中,我们提出了一种新的HDR成像技术,可以专门模拟对准和曝光不确定性以产生高质量的HDR结果。我们介绍了一种使用HDR感知的HDR感知的不确定性驱动的注意力映射来联合对齐和评估对齐和曝光可靠性的策略,该注意力映像鲁棒地将帧合并为单个高质量的HDR图像。此外,我们介绍了一种渐进式多级图像融合方法,可以以置换不变的方式灵活地合并任何数量的LDR图像。实验结果表明,我们的方法可以为最先进的高达0.8dB的PSNR改进,以及更好的细节,颜色和更少人工制品的主观改进。
translated by 谷歌翻译
从一组多曝光图像中重建无精神的高动态范围(HDR)图像是一项具有挑战性的任务,尤其是在大型对象运动和闭塞的情况下,使用现有方法导致可见的伪影。为了解决这个问题,我们提出了一个深层网络,该网络试图学习以正规损失为指导的多尺度特征流。它首先提取多尺度功能,然后对非参考图像的特征对齐。对齐后,我们使用残留的通道注意块将不同图像的特征合并。广泛的定性和定量比较表明,我们的方法可实现最新的性能,并在颜色伪像和几何变形大大减少的情况下产生出色的结果。
translated by 谷歌翻译
在本文中,我们研究了现实世界图像脱毛的问题,并考虑了改善深度图像脱布模型的性能的两个关键因素,即培训数据综合和网络体系结构设计。经过现有合成数据集训练的脱毛模型在由于域移位引起的真实模糊图像上的表现较差。为了减少合成和真实域之间的域间隙,我们提出了一种新颖的现实模糊合成管道来模拟摄像机成像过程。由于我们提出的合成方法,可以使现有的Deblurring模型更强大,以处理现实世界的模糊。此外,我们开发了一个有效的脱蓝色模型,该模型同时捕获特征域中的非本地依赖性和局部上下文。具体而言,我们将多路径变压器模块介绍给UNET架构,以进行丰富的多尺度功能学习。在三个现实世界数据集上进行的全面实验表明,所提出的Deblurring模型的性能优于最新方法。
translated by 谷歌翻译
视频脱毛方法的关键成功因素是用相邻视频帧的尖锐像素来补偿中框的模糊像素。因此,主流方法根据估计的光流对齐相邻帧并融合对齐帧进行恢复。但是,这些方法有时会产生不令人满意的结果,因为它们很少考虑像素的模糊水平,这可能会引入视频帧中的模糊像素。实际上,并非视频框架中的所有像素都对脱毛都是敏锐的和有益的。为了解决这个问题,我们提出了用于视频Delurring的时空变形注意网络(STDANET),该网络通过考虑视频帧的像素模糊级别来提取尖锐像素的信息。具体而言,stdanet是一个编码器 - 码头网络,结合了运动估计器和时空变形注意(STDA)模块,其中运动估计器预测了粗略光流,这些流量被用作基本偏移,以在STDA模块中找到相应的尖锐像素。实验结果表明,所提出的Stdanet对GOPRO,DVD和BSD数据集的最新方法表现出色。
translated by 谷歌翻译
Standard video frame interpolation methods first estimate optical flow between input frames and then synthesize an intermediate frame guided by motion. Recent ap-proaches merge these two steps into a single convolution process by convolving input frames with spatially adaptive kernels that account for motion and re-sampling simultaneously. These methods require large kernels to handle large motion, which limits the number of pixels whose kernels can be estimated at once due to the large memory demand. To address this problem, this paper formulates frame interpolation as local separable convolution over input frames using pairs of 1D kernels. Compared to regular 2D kernels, the 1D kernels require significantly fewer parameters to be estimated. Our method develops a deep fully convolutional neural network that takes two input frames and estimates pairs of 1D kernels for all pixels simultaneously. Since our method is able to estimate kernels and synthesizes the whole video frame at once, it allows for the incorporation of perceptual loss to train the neural network to produce visually pleasing frames. This deep neural network is trained end-to-end using widely available video data without any human annotation. Both qualitative and quantitative experiments show that our method provides a practical solution to high-quality video frame interpolation.
translated by 谷歌翻译