尽管运动补偿大大提高了视频质量,但单独执行运动补偿和视频脱张需要大量的计算开销。本文提出了一个实时视频Deblurring框架,该框架由轻巧的多任务单元组成,该单元以有效的方式支持视频脱张和运动补偿。多任务单元是专门设计的,用于使用单个共享网络处理两个任务的大部分,并由多任务详细网络和简单的网络组成,用于消除和运动补偿。多任务单元最大程度地减少了将运动补偿纳入视频Deblurring的成本,并实现了实时脱毛。此外,通过堆叠多个多任务单元,我们的框架在成本和过度质量之间提供了灵活的控制。我们通过实验性地验证了方法的最先进的质量,与以前的方法相比,该方法的运行速度要快得多,并显示了实时的实时性能(在DVD数据集中测量了30.99db@30fps)。
translated by 谷歌翻译
Motion blur from camera shake is a major problem in videos captured by hand-held devices. Unlike single-image deblurring, video-based approaches can take advantage of the abundant information that exists across neighboring frames. As a result the best performing methods rely on the alignment of nearby frames. However, aligning images is a computationally expensive and fragile procedure, and methods that aggregate information must therefore be able to identify which regions have been accurately aligned and which have not, a task that requires high level scene understanding. In this work, we introduce a deep learning solution to video deblurring, where a CNN is trained end-toend to learn how to accumulate information across frames. To train this network, we collected a dataset of real videos recorded with a high frame rate camera, which we use to generate synthetic motion blur for supervision. We show that the features learned from this dataset extend to deblurring motion blur that arises due to camera shake in a wide range of videos, and compare the quality of results to a number of other baselines 1 .
translated by 谷歌翻译
视频脱毛方法的关键成功因素是用相邻视频帧的尖锐像素来补偿中框的模糊像素。因此,主流方法根据估计的光流对齐相邻帧并融合对齐帧进行恢复。但是,这些方法有时会产生不令人满意的结果,因为它们很少考虑像素的模糊水平,这可能会引入视频帧中的模糊像素。实际上,并非视频框架中的所有像素都对脱毛都是敏锐的和有益的。为了解决这个问题,我们提出了用于视频Delurring的时空变形注意网络(STDANET),该网络通过考虑视频帧的像素模糊级别来提取尖锐像素的信息。具体而言,stdanet是一个编码器 - 码头网络,结合了运动估计器和时空变形注意(STDA)模块,其中运动估计器预测了粗略光流,这些流量被用作基本偏移,以在STDA模块中找到相应的尖锐像素。实验结果表明,所提出的Stdanet对GOPRO,DVD和BSD数据集的最新方法表现出色。
translated by 谷歌翻译
远程时间对齐至关重要,但对视频恢复任务有挑战性。最近,一些作品试图将远程对齐分成几个子对齐并逐步处理它们。虽然该操作有助于建模遥控对应关系,但由于传播机制,误差累积是不可避免的。在这项工作中,我们提出了一种新颖的通用迭代对准模块,其采用逐渐改进方案进行子对准,产生更准确的运动补偿。为了进一步提高对准精度和时间一致性,我们开发了一种非参数重新加权方法,其中每个相邻帧的重要性以用于聚合的空间方式自适应地评估。凭借拟议的策略,我们的模型在一系列视频恢复任务中实现了多个基准测试的最先进的性能,包括视频超分辨率,去噪和去束性。我们的项目可用于\ url {https:/github.com/redrock303/revisiting-temporal-alignment-for-video-Restion.git}。
translated by 谷歌翻译
从一组多曝光图像中重建无精神的高动态范围(HDR)图像是一项具有挑战性的任务,尤其是在大型对象运动和闭塞的情况下,使用现有方法导致可见的伪影。为了解决这个问题,我们提出了一个深层网络,该网络试图学习以正规损失为指导的多尺度特征流。它首先提取多尺度功能,然后对非参考图像的特征对齐。对齐后,我们使用残留的通道注意块将不同图像的特征合并。广泛的定性和定量比较表明,我们的方法可实现最新的性能,并在颜色伪像和几何变形大大减少的情况下产生出色的结果。
translated by 谷歌翻译
由于空间和时间变化的模糊,视频脱毛是一个高度不足的问题。视频脱毛的直观方法包括两个步骤:a)检测当前框架中的模糊区域; b)利用来自相邻帧中清晰区域的信息,以使当前框架脱毛。为了实现这一过程,我们的想法是检测每个帧的像素模糊级别,并将其与视频Deblurring结合使用。为此,我们提出了一个新颖的框架,该框架利用了先验运动级(MMP)作为有效的深视频脱张的指南。具体而言,由于在曝光时间内沿其轨迹的像素运动与运动模糊水平呈正相关,因此我们首先使用高频尖锐框架的光流量的平均幅度来生成合成模糊框架及其相应的像素 - 像素 - 明智的运动幅度地图。然后,我们构建一个数据集,包括模糊框架和MMP对。然后,由紧凑的CNN通过回归来学习MMP。 MMP包括空间和时间模糊级别的信息,可以将其进一步集成到视频脱毛的有效复发性神经网络(RNN)中。我们进行密集的实验,以验证公共数据集中提出的方法的有效性。
translated by 谷歌翻译
表示像素位移的光流量广泛用于许多计算机视觉任务中以提供像素级运动信息。然而,随着卷积神经网络的显着进展,建议最近的最先进的方法直接在特征级别解决问题。由于特征向量的位移不与像素位移不一致,因此常用方法是:将光流向神经网络向前传递到任务数据集上的微调该网络。利用这种方法,他们期望微调网络来产生编码特征级运动信息的张量。在本文中,我们重新思考此事实上的范式并分析了视频对象检测任务中的缺点。为了缓解这些问题,我们提出了一种具有视频对象检测的\ textBF {i} n-network \ textbf {f} eature \ textbf {f} eature \ textbf {f}低估计模块(iff模块)的新型网络(iff-net)。在不借鉴任何其他数据集的预先训练,我们的IFF模块能够直接产生\ textBF {feature flow},表示特征位移。我们的IFF模块由一个浅模块组成,它与检测分支共享该功能。这种紧凑的设计使我们的IFF-Net能够准确地检测对象,同时保持快速推断速度。此外,我们提出了基于\ Textit {自我监督}的转换剩余损失(TRL),这进一步提高了IFF-Net的性能。我们的IFF-Net优于现有方法,并在Imagenet VID上设置最先进的性能。
translated by 谷歌翻译
Video restoration tasks, including super-resolution, deblurring, etc, are drawing increasing attention in the computer vision community. A challenging benchmark named REDS is released in the NTIRE19 Challenge. This new benchmark challenges existing methods from two aspects:(1) how to align multiple frames given large motions, and (2) how to effectively fuse different frames with diverse motion and blur. In this work, we propose a novel Video Restoration framework with Enhanced Deformable convolutions, termed EDVR, to address these challenges. First, to handle large motions, we devise a Pyramid, Cascading and Deformable (PCD) alignment module, in which frame alignment is done at the feature level using deformable convolutions in a coarse-to-fine manner. Second, we propose a Temporal and Spatial Attention (TSA) fusion module, in which attention is applied both temporally and spatially, so as to emphasize important features for subsequent restoration. Thanks to these modules, our EDVR wins the champions and outperforms the second place by a large margin in all four tracks in the NTIRE19 video restoration and enhancement challenges. EDVR also demonstrates superior performance to state-of-the-art published methods on video super-resolution and deblurring. The code is available at https://github.com/xinntao/EDVR.
translated by 谷歌翻译
旨在恢复降级视频清晰框架的视频修复一直在吸引越来越多的关注。需要进行视频修复来建立来自多个未对准帧的时间对应关系。为了实现这一目标,现有的深层方法通常采用复杂的网络体系结构,例如集成光流,可变形卷积,跨框或跨像素自我发项层,从而导致昂贵的计算成本。我们认为,通过适当的设计,视频修复中的时间信息利用可能会更加有效。在这项研究中,我们提出了一个简单,快速但有效的视频修复框架。我们框架的关键是分组的时空转移,它简单且轻巧,但可以隐式建立框架间的对应关系并实现多框架聚合。加上用于框架编码和解码的基本2D U-NET,这种有效的时空移位模块可以有效地应对视频修复中的挑战。广泛的实验表明,我们的框架超过了先前的最先进方法,其计算成本的43%在视频DeBlurring和Video Denoisising上。
translated by 谷歌翻译
在本文中,我们提出了一种新颖的联合去钻头和多帧插值(DEMFI)框架,称为DEMFI-NET,该网球被准确地将较低帧速率的模糊视频以基于流动引导的更高帧速率转换为尖锐的视频基于关提性的相关性的特征借助于多帧插值(MFI)的借助于基于相关的特征Bolstering(FAC-FB)模块和递归升压(RB)。 DEMFI-NET联合执行DeBlurring和MFI,其中其基线版本执行与FAC-FB模块的基于特征流的翘曲,以获得尖锐插值的帧,也可以解置两个中心输入帧。此外,其扩展版本进一步提高了基于基于像素的RB的像素流的翘曲的联合任务性能。我们的FAC-FB模块在特征域中的模糊输入帧中有效地聚集了分布式模糊像素信息,以改善整体关节性能,这是计算上有效的,因为其细心的相关性仅聚焦。结果,与最近的SOTA方法相比,我们的DEMFI-Net实现了最先进的数据集,用于近期SOTA方法,用于脱孔和MFI。所有源代码包括预押德福网在https://github.com/jihyongoh/demfi上公开提供。
translated by 谷歌翻译
相邻帧的比对被认为是视频超分辨率(VSR)中的重要操作。高级VSR模型,包括最新的VSR变形金刚,通常配备精心设计的对齐模块。但是,自我注意机制的进步可能违反了这种常识。在本文中,我们重新考虑了对齐在VSR变压器中的作用,并进行了几种违反直觉的观察。我们的实验表明:(i)VSR变形金刚可以直接利用来自非对齐视频的多帧信息,并且(ii)现有的对齐方法有时对VSR变形金刚有害。这些观察结果表明,我们可以仅通过删除对齐模块并采用更大的注意力窗口来进一步提高VSR变压器的性能。然而,这样的设计将大大增加计算负担,无法处理大型动议。因此,我们提出了一种称为斑块对齐的新的,有效的对准方法,该方法将图像贴片而不是像素对齐。配备贴片对齐的VSR变形金刚可以在多个基准测试上证明最先进的性能。我们的工作提供了有关如何在VSR中使用多帧信息以及如何为不同网络/数据集选择对齐方法的宝贵见解。代码和模型将在https://github.com/xpixelgroup/rethinkvsralignment上发布。
translated by 谷歌翻译
基于3DCNN,ConvlSTM或光流的先前方法在视频显着对象检测(VSOD)方面取得了巨大成功。但是,它们仍然遭受高计算成本或产生的显着图质量较差的困扰。为了解决这些问题,我们设计了一个基于时空存储器(STM)网络,该网络从相邻帧中提取当前帧的有用时间信息作为VSOD的时间分支。此外,以前的方法仅考虑无时间关联的单帧预测。结果,模型可能无法充分关注时间信息。因此,我们最初将框架间的对象运动预测引入VSOD。我们的模型遵循标准编码器 - 编码器体系结构。在编码阶段,我们通过使用电流及其相邻帧的高级功能来生成高级的时间特征。这种方法比基于光流的方法更有效。在解码阶段,我们提出了一种有效的空间和时间分支融合策略。高级特征的语义信息用于融合低级特征中的对象细节,然后逐步获得时空特征以重建显着性图。此外,受图像显着对象检测(ISOD)中常用的边界监督的启发,我们设计了一种运动感知损失,用于预测对象边界运动,并同时对VSOD和对象运动预测执行多任务学习,这可以进一步促进模型以提取提取的模型时空特征准确并保持对象完整性。在几个数据集上进行的广泛实验证明了我们方法的有效性,并且可以在某些数据集上实现最新指标。所提出的模型不需要光流或其他预处理,并且在推理过程中可以达到近100 fps的速度。
translated by 谷歌翻译
在时空邻域中利用类似和更清晰的场景补丁对于视频去纹理至关重要。然而,基于CNN的方法显示了捕获远程依赖性和建模非本地自相相似性的限制。在本文中,我们提出了一种新颖的框架,流引导稀疏变压器(FGST),用于视频去掩模。在FGST中,我们定制自我关注模块,流动引导的基于稀疏窗口的多头自我关注(FGSW-MSA)。对于模糊参考帧上的每个$查询$元素,FGSW-MSA享有估计的光流向全局样本的指导,其空间稀疏但与相邻帧中相同的场景补丁对应的高度相关$键$元素。此外,我们介绍了一种反复嵌入(RE)机制,以从过去的框架转移信息并加强远程时间依赖性。综合实验表明,我们提出的FGST优于DVD和GoPro数据集的最先进的(SOTA)方法,甚至在真实视频去纹理中产生更多视觉上令人愉悦的结果。代码和型号将发布给公众。
translated by 谷歌翻译
我们提出了一种用于视频帧插值(VFI)的实时中流估计算法。许多最近的基于流的VFI方法首先估计双向光学流,然后缩放并将它们倒转到近似中间流动,导致运动边界上的伪像。RIFE使用名为IFNET的神经网络,可以直接估计中间流量从粗细流,速度更好。我们设计了一种用于训练中间流动模型的特权蒸馏方案,这导致了大的性能改善。Rife不依赖于预先训练的光流模型,可以支持任意时间的帧插值。实验表明,普里埃雷在若干公共基准上实现了最先进的表现。\ url {https://github.com/hzwer/arxiv2020-rife}。
translated by 谷歌翻译
视频框架插值(VFI)旨在合成两个连续帧之间的中间框架。最先进的方法通常采用两步解决方案,其中包括1)通过基于流动的运动估计来生成本地光线的像素,2)将扭曲的像素混合以通过深神经合成网络形成全帧。但是,由于两个连续的帧不一致,新帧的扭曲功能通常不会对齐,这会导致扭曲和模糊的帧,尤其是在发生大型和复杂的运动时。为了解决这个问题,在本文中,我们提出了一种新颖的视频框架插值变压器(TTVFI)。特别是,我们以不一致的动作为查询令牌制定了扭曲的特征,并将运动轨迹中的相关区域从两个原始的连续帧中提出到键和值。在沿轨迹的相关令牌上学习了自我注意力,以通过端到端训练将原始特征融合到中间框架中。实验结果表明,我们的方法在四个广泛使用的VFI基准中优于其他最先进的方法。代码和预培训模型都将很快发布。
translated by 谷歌翻译
尽管在深层视频降级中取得了重大进展,但利用历史和未来框架仍然非常具有挑战性。双向反复网络(BIRNN)在几个视频恢复任务中表现出吸引力的表现。但是,Birnn本质上是离线的,因为它使用向后的复发模块从最后一个帧传播到当前帧,这会导致高潜伏期和大型内存消耗。为了解决Birnn的离线问题,我们提出了一个新颖的经常性网络,该网络由向单向视频DeNoising的前向和观察的经常性模块组成。特别是,look-aver-aph模块是一个精心设计的前向模块,用于利用近距离框架的信息。当降级当前框架时,将隐藏的特征组合出来,并相互反复的模块组合,从而使其可行,可以利用历史和近乎未来的框架。由于不邻近框架之间的现场运动,当从近距离框架到当前框架的扭曲外观功能时,可能会失踪边界像素,这可以通过合并前向翘曲和拟议边框扩大来大大减轻。实验表明,我们的方法通过持续的延迟和记忆消耗实现最先进的性能。代码可在https://github.com/nagejacob/flornn上提供可用。
translated by 谷歌翻译
学习的视频压缩最近成为开发高级视频压缩技术的重要研究主题,其中运动补偿被认为是最具挑战性的问题之一。在本文中,我们通过异质变形补偿策略(HDCVC)提出了一个学识渊博的视频压缩框架,以解决由单尺度可变形的特征域中单尺可变形核引起的不稳定压缩性能的问题。更具体地说,所提出的算法提取物从两个相邻框架中提取的算法提取物特征来估算估计内容自适应的异质变形(Hetdeform)内核偏移量,而不是利用光流或单尺内核变形对齐。然后,我们将参考特征转换为HetDeform卷积以完成运动补偿。此外,我们设计了一个空间 - 邻化的分裂归一化(SNCDN),以实现更有效的数据高斯化结合了广义分裂的归一化。此外,我们提出了一个多框架增强的重建模块,用于利用上下文和时间信息以提高质量。实验结果表明,HDCVC比最近最新学习的视频压缩方法取得了优越的性能。
translated by 谷歌翻译
我们提出了一种称为基于DNN的基于DNN的框架,称为基于增强的相关匹配的视频帧插值网络,以支持4K的高分辨率,其具有大规模的运动和遮挡。考虑到根据分辨率的网络模型的可扩展性,所提出的方案采用经常性金字塔架构,该架构分享每个金字塔层之间的参数进行光学流量估计。在所提出的流程估计中,通过追踪具有最大相关性的位置来递归地改进光学流。基于前扭曲的相关匹配可以通过排除遮挡区域周围的错误扭曲特征来提高流量更新的准确性。基于最终双向流动,使用翘曲和混合网络合成任意时间位置的中间帧,通过细化网络进一步改善。实验结果表明,所提出的方案在4K视频数据和低分辨率基准数据集中占据了之前的工作,以及具有最小型号参数的客观和主观质量。
translated by 谷歌翻译
由于大气湍流的扭曲而恢复图像是一个长期存在的问题,这是由于变形的空间变化,图像形成过程的非线性以及训练和测试数据的稀缺性。现有方法通常在失真模型上具有强大的统计假设,在许多情况下,由于没有概括,因此在现实世界中的性能有限。为了克服挑战,本文提出了一种端到端物理驱动的方法,该方法有效,可以推广到现实世界的湍流。在数据合成方面,我们通过通过宽sense式的平稳性近似随机场来显着增加SOTA湍流模拟器可以处理的图像分辨率。新的数据合成过程使大规模的多级湍流和训练的地面真相对产生。在网络设计方面,我们提出了湍流缓解变压器(TMT),这是一个两级U-NET形状的多帧恢复网络,该网络具有Noval有效的自发机制,称为暂时通道关节关注(TCJA)。我们还引入了一种新的培训方案,该方案由新的模拟器启用,并设计新的变压器单元以减少内存消耗。在静态场景和动态场景上的实验结果是有希望的,包括各种真实的湍流场景。
translated by 谷歌翻译
我们提出了Tain(视频插值的变压器和注意力),这是一个用于视频插值的残留神经网络,旨在插入中间框架,并在其周围连续两个图像框架下进行插值。我们首先提出一个新型的视觉变压器模块,称为交叉相似性(CS),以与预测插值框架相似的外观相似的外观。然后,这些CS特征用于完善插值预测。为了说明CS功能中的遮挡,我们提出了一个图像注意(IA)模块,以使网络可以从另一个框架上关注CS功能。此外,我们还使用封闭式贴片来增强培训数据集,该补丁可以跨帧移动,以改善网络对遮挡和大型运动的稳健性。由于现有方法产生平滑的预测,尤其是在MB附近,因此我们根据图像梯度使用额外的训练损失来产生更清晰的预测。胜过不需要流量估计并与基于流程的方法相当执行的现有方法,同时在VIMEO90K,UCF101和SNU-FILM基准的推理时间上具有计算有效的效率。
translated by 谷歌翻译