Graph neural networks (GNNs) have been successfully applied to early mild cognitive impairment (EMCI) detection, with the usage of elaborately designed features constructed from blood oxygen level-dependent (BOLD) time series. However, few works explored the feasibility of using BOLD signals directly as features. Meanwhile, existing GNN-based methods primarily rely on hand-crafted explicit brain topology as the adjacency matrix, which is not optimal and ignores the implicit topological organization of the brain. In this paper, we propose a spatial temporal graph convolutional network with a novel graph structure self-learning mechanism for EMCI detection. The proposed spatial temporal graph convolution block directly exploits BOLD time series as input features, which provides an interesting view for rsfMRI-based preclinical AD diagnosis. Moreover, our model can adaptively learn the optimal topological structure and refine edge weights with the graph structure self-learning mechanism. Results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database show that our method outperforms state-of-the-art approaches. Biomarkers consistent with previous studies can be extracted from the model, proving the reliable interpretability of our method.
translated by 谷歌翻译
大脑区域之间的功能连通性(FC)通常是通过应用于功能磁共振成像(FMRI)数据的统计依赖度量来估计的。所得的功能连接矩阵(FCM)通常用于表示脑图的邻接矩阵。最近,图形神经网络(GNN)已成功应用于FCM,以学习脑图表示。但是,现有GNN方法的一个普遍局限性是,它们要求在模型训练之前知道图形邻接矩阵。因此,隐含地假设数据的基础依赖性结构已知。不幸的是,对于fMRI而言,情况并非如此,因为哪种统计度量的选择最能代表数据的依赖性结构是非平凡的。同样,大多数GNN应用于功能磁共振成像,FC都会随着时间的推移而静态,这与神经科学的证据相反,表明功能性脑网络是随时间变化且动态的。这些复合问题可能会对GNN学习脑图表示的能力产生不利影响。作为解决方案,我们提出了动态大脑图结构学习(DBGSL),这是一种学习fMRI数据最佳时变依赖性结构的监督方法。具体而言,DBGSL通过应用于大脑区域嵌入的时空注意力从fMRI时间表中学习了动态图。然后将所得的图馈送到空间GNN中,以学习分类的图表。大型休息状态以及性别分类任务的fMRI数据集的实验表明,DBGSL可以实现最新的性能。此外,对学习动态图的分析突出了与现有神经科学文献的发现相符的预测相关大脑区域。
translated by 谷歌翻译
Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic. A basic assumption behind multivariate time series forecasting is that its variables depend on one another but, upon looking closely, it's fair to say that existing methods fail to fully exploit latent spatial dependencies between pairs of variables. In recent years, meanwhile, graph neural networks (GNNs) have shown high capability in handling relational dependencies. GNNs require well-defined graph structures for information propagation which means they cannot be applied directly for multivariate time series where the dependencies are not known in advance. In this paper, we propose a general graph neural network framework designed specifically for multivariate time series data. Our approach automatically extracts the uni-directed relations among variables through a graph learning module, into which external knowledge like variable attributes can be easily integrated. A novel mix-hop propagation layer and a dilated inception layer are further proposed to capture the spatial and temporal dependencies within the time series. The graph learning, graph convolution, and temporal convolution modules are jointly learned in an end-to-end framework. Experimental results show that our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information. CCS CONCEPTS• Computing methodologies → Neural networks; Artificial intelligence.
translated by 谷歌翻译
在大脑中找到适当的动态活动的适当表示对于许多下游应用至关重要。由于其高度动态的性质,暂时平均fMRI(功能磁共振成像)只能提供狭窄的脑活动视图。以前的作品缺乏学习和解释大脑体系结构中潜在动态的能力。本文构建了一个有效的图形神经网络模型,该模型均包含了从DWI(扩散加权成像)获得的区域映射的fMRI序列和结构连接性作为输入。我们通过学习样品水平的自适应邻接矩阵并进行新型多分辨率内群平滑来发现潜在大脑动力学的良好表示。我们还将输入归因于具有集成梯度的输入,这使我们能够针对每个任务推断(1)高度涉及的大脑连接和子网络,(2)成像序列的时间键帧,这些成像序列表征了任务,以及(3)歧视单个主体的子网络。这种识别特征在异质任务和个人中表征信号状态的关键子网的能力对神经科学和其他科学领域至关重要。广泛的实验和消融研究表明,我们提出的方法在空间 - 周期性图信号建模中的优越性和效率,具有对脑动力学的深刻解释。
translated by 谷歌翻译
近年来,来自神经影像数据的脑疾病的单一受试者预测引起了人们的关注。然而,对于某些异质性疾病,例如严重抑郁症(MDD)和自闭症谱系障碍(ASD),大规模多站点数据集对预测模型的性能仍然很差。我们提出了一个两阶段的框架,以改善静止状态功能磁共振成像(RS-FMRI)的异质精神疾病的诊断。首先,我们建议对健康个体的数据进行自我监督的掩盖预测任务,以利用临床数据集中健康对照与患者之间的差异。接下来,我们在学习的判别性表示方面培训了一个有监督的分类器。为了建模RS-FMRI数据,我们开发Graph-S4;最近提出的状态空间模型S4扩展到图形设置,其中底层图结构未提前知道。我们表明,将框架和Graph-S4结合起来可以显着提高基于神经成像的MDD和ASD的基于神经影像学的单个主题预测模型和三个开源多中心RS-FMRI临床数据集的诊断性能。
translated by 谷歌翻译
Mapping the connectome of the human brain using structural or functional connectivity has become one of the most pervasive paradigms for neuroimaging analysis. Recently, Graph Neural Networks (GNNs) motivated from geometric deep learning have attracted broad interest due to their established power for modeling complex networked data. Despite their superior performance in many fields, there has not yet been a systematic study of how to design effective GNNs for brain network analysis. To bridge this gap, we present BrainGB, a benchmark for brain network analysis with GNNs. BrainGB standardizes the process by (1) summarizing brain network construction pipelines for both functional and structural neuroimaging modalities and (2) modularizing the implementation of GNN designs. We conduct extensive experiments on datasets across cohorts and modalities and recommend a set of general recipes for effective GNN designs on brain networks. To support open and reproducible research on GNN-based brain network analysis, we host the BrainGB website at https://braingb.us with models, tutorials, examples, as well as an out-of-box Python package. We hope that this work will provide useful empirical evidence and offer insights for future research in this novel and promising direction.
translated by 谷歌翻译
脑电图(EEG)是一种有用的方法,可以在多媒体消费期间隐式监控用户感知状态。基于EEG的监测的实际使用的主要挑战之一是在脑电图分类中实现令人满意的准确性。不同脑区之间的连接是脑电图分类的重要属性。但是,如何定义给定任务的连接结构仍然是一个打开问题,因为没有关于连接结构应该如何最大化分类性能的实践。在本文中,我们提出了一种基于EEG的情绪视频分类的端到端神经网络模型,其可以直接从一组RAW EEG信号提取适当的多层图形结构和信号特征,并使用它们执行分类。实验结果表明,与使用手动定义的连接结构和信号特征的现有方法相比,我们的方法能够提高性能。此外,我们表明,在一致性方面,图形结构提取过程可靠,并且在大脑中发生的情绪感知的角度来看,学习的图形结构具有很大的意义。
translated by 谷歌翻译
功能磁共振成像(fMRI)的功能连通性网络(FCN)数据越来越多地用于诊断脑疾病。然而,最新的研究用来使用单个脑部分析地图集以一定的空间尺度构建FCN,该空间尺度很大程度上忽略了层次范围内不同空间尺度的功能相互作用。在这项研究中,我们提出了一个新型框架,以对脑部疾病诊断进行多尺度FCN分析。我们首先使用一组定义明确的多尺地图像来计算多尺度FCN。然后,我们利用多尺度地图集中各个区域之间具有生物学意义的大脑分层关系,以跨多个空间尺度进行淋巴结池,即“ Atlas指导的池”。因此,我们提出了一个基于多尺度的层次图形卷积网络(MAHGCN),该网络(MAHGCN)建立在图形卷积和ATLAS引导的池上,以全面地从多尺度FCN中详细提取诊断信息。关于1792名受试者的神经影像数据的实验证明了我们提出的方法在诊断阿尔茨海默氏病(AD),AD的前驱阶段(即轻度认知障碍[MCI])以及自闭症谱系障碍(ASD),,AD的前瞻性阶段(即,轻度认知障碍[MCI]),,精度分别为88.9%,78.6%和72.7%。所有结果都显示出我们提出的方法比其他竞争方法具有显着优势。这项研究不仅证明了使用深度学习增强的静止状态fMRI诊断的可行性,而且还强调,值得探索多尺度脑层次结构中的功能相互作用,并将其整合到深度学习网络体系结构中,以更好地理解有关的神经病理学。脑疾病。
translated by 谷歌翻译
Neuropsychological studies suggest that co-operative activities among different brain functional areas drive high-level cognitive processes. To learn the brain activities within and among different functional areas of the brain, we propose LGGNet, a novel neurologically inspired graph neural network, to learn local-global-graph representations of electroencephalography (EEG) for Brain-Computer Interface (BCI). The input layer of LGGNet comprises a series of temporal convolutions with multi-scale 1D convolutional kernels and kernel-level attentive fusion. It captures temporal dynamics of EEG which then serves as input to the proposed local and global graph-filtering layers. Using a defined neurophysiologically meaningful set of local and global graphs, LGGNet models the complex relations within and among functional areas of the brain. Under the robust nested cross-validation settings, the proposed method is evaluated on three publicly available datasets for four types of cognitive classification tasks, namely, the attention, fatigue, emotion, and preference classification tasks. LGGNet is compared with state-of-the-art methods, such as DeepConvNet, EEGNet, R2G-STNN, TSception, RGNN, AMCNN-DGCN, HRNN and GraphNet. The results show that LGGNet outperforms these methods, and the improvements are statistically significant (p<0.05) in most cases. The results show that bringing neuroscience prior knowledge into neural network design yields an improvement of classification performance. The source code can be found at https://github.com/yi-ding-cs/LGG
translated by 谷歌翻译
功能连接(FC)研究已经证明了通过FMRI相关矩阵的无向加权图来研究脑及其疾病的总体价值。然而,与FC的大多数工作都取决于连接的方式,还取决于FC矩阵的手册后HOC分析。在这项工作中,我们提出了一个深入的学习架构Braingnn,它可以学习连接结构,作为学习对象的一部分。它同时将图形神经网络应用于此学习图,并学习选择对预测任务重要的大脑区域的稀疏子集。我们展示了在精神分裂症FMRI数据集中的模型的最先进的分类性能,并证明了内省如何导致紊乱的相关结果。模型学到的图表表现出强烈的阶级歧视,相关地区的稀疏子集与精神分裂症文献一致。
translated by 谷歌翻译
多变量时间序列(MTS)预测在智能应用的自动化和优化中起着重要作用。这是一个具有挑战性的任务,因为我们需要考虑复杂的变量依赖关系和可变间依赖关系。现有的作品仅在单个可变依赖项的帮助下学习时间模式。然而,许多真实世界MTS中有多种时间模式。单个可变间依赖项使模型更倾向于学习一种类型的突出和共享的时间模式。在本文中,我们提出了一个多尺度自适应图形神经网络(MOLDN)来解决上述问题。 MOLDN利用多尺度金字塔网络,以在不同的时间尺度上保留潜在的时间依赖关系。由于可变间依赖关系可以在不同的时间尺度下不同,所以自适应图学习模块被设计为在没有预先定义的前沿的情况下推断规模特定的可变依赖关系。鉴于多尺度特征表示和规模特定的可变间依赖关系,引入了一个多尺度的时间图神经网络,以共同模拟帧内依赖性和可变间依赖性。之后,我们开发一个尺度明智的融合模块,以在不同时间尺度上有效地促进协作,并自动捕获贡献的时间模式的重要性。四个真实数据集的实验表明,Magnn在各种设置上表明了最先进的方法。
translated by 谷歌翻译
Sleep stage recognition is crucial for assessing sleep and diagnosing chronic diseases. Deep learning models, such as Convolutional Neural Networks and Recurrent Neural Networks, are trained using grid data as input, making them not capable of learning relationships in non-Euclidean spaces. Graph-based deep models have been developed to address this issue when investigating the external relationship of electrode signals across different brain regions. However, the models cannot solve problems related to the internal relationships between segments of electrode signals within a specific brain region. In this study, we propose a Pearson correlation-based graph attention network, called PearNet, as a solution to this problem. Graph nodes are generated based on the spatial-temporal features extracted by a hierarchical feature extraction method, and then the graph structure is learned adaptively to build node connections. Based on our experiments on the Sleep-EDF-20 and Sleep-EDF-78 datasets, PearNet performs better than the state-of-the-art baselines.
translated by 谷歌翻译
多变量时间序列预测是一个具有挑战性的任务,因为数据涉及长期和短期模式的混合,具有变量之间的动态时空依赖性。现有图形神经网络(GNN)通常与预定义的空间图或学习的固定邻接图模拟多变量关系。它限制了GNN的应用,并且无法处理上述挑战。在本文中,我们提出了一种新颖的框架,即静态和动态图形学习 - 神经网络(SDGL)。该模型分别从数据获取静态和动态图形矩阵分别为模型长期和短期模式。开发静态Matric以通过节点嵌入捕获固定的长期关联模式,并利用图规律性来控制学习静态图的质量。为了捕获变量之间的动态依赖性,我们提出了基于改变节点特征和静态节点Embeddings生成时变矩阵的动态图。在该方法中,我们将学习的静态图信息作为感应偏置集成为诱导动态图和局部时空模式更好。广泛的实验是在两个交通数据集中进行,具有额外的结构信息和四个时间序列数据集,这表明我们的方法在几乎所有数据集上实现了最先进的性能。如果纸张被接受,我将在GitHub上打开源代码。
translated by 谷歌翻译
无创医学神经影像学已经对大脑连通性产生了许多发现。开发了几种实质技术绘制形态,结构和功能性脑连接性,以创建人脑中神经元活动的全面路线图。依靠其非欧国人数据类型,图形神经网络(GNN)提供了一种学习深图结构的巧妙方法,并且它正在迅速成为最先进的方法,从而导致各种网络神经科学任务的性能增强。在这里,我们回顾了当前基于GNN的方法,突出了它们在与脑图有关的几种应用中使用的方式,例如缺失的脑图合成和疾病分类。最后,我们通过绘制了通往网络神经科学领域中更好地应用GNN模型在神经系统障碍诊断和人群图整合中的路径。我们工作中引用的论文列表可在https://github.com/basiralab/gnns-inns-intwork-neuroscience上找到。
translated by 谷歌翻译
随着传感技术的进步,多元时间序列分类(MTSC)最近受到了相当大的关注。基于深度学习的MTSC技术主要依赖于卷积或经常性神经网络,主要涉及单时间序列的时间依赖性。结果,他们努力直接在多变量变量中表达成对依赖性。此外,基于图形神经网络(GNNS)的当前空间 - 时间建模(例如,图形分类)方法本质上是平的,并且不能以分层方式聚合集线器数据。为了解决这些限制,我们提出了一种基于新的图形汇集框架MTPOOL,以获得MTS的表现力全球表示。我们首先通过采用通过图形结构学习模块的相互作用来将MTS切片转换为曲线图,并通过时间卷积模块获得空间 - 时间图节点特征。为了获得全局图形级表示,我们设计了基于“编码器 - 解码器”的变形图池池模块,用于为群集分配创建自适应质心。然后我们将GNN和我们所提出的变分图层汇集层组合用于联合图表示学习和图形粗糙化,之后该图逐渐赋予一个节点。最后,可差异化的分类器将此粗糙的表示来获取最终预测的类。 10个基准数据集的实验表明MTPOOL优于MTSC任务中最先进的策略。
translated by 谷歌翻译
流量预测是智能交通系统中时空学习任务的规范示例。现有方法在图形卷积神经操作员中使用预定的矩阵捕获空间依赖性。但是,显式的图形结构损失了节点之间关系的一些隐藏表示形式。此外,传统的图形卷积神经操作员无法在图上汇总远程节点。为了克服这些限制,我们提出了一个新型的网络,空间 - 周期性自适应图卷积,并通过注意力网络(Staan)进行交通预测。首先,我们采用自适应依赖性矩阵,而不是在GCN处理过程中使用预定义的矩阵来推断节点之间的相互依存关系。其次,我们集成了基于图形注意力网络的PW注意,该图形是为全局依赖性设计的,而GCN作为空间块。更重要的是,在我们的时间块中采用了堆叠的散布的1D卷积,具有长期预测的效率,用于捕获不同的时间序列。我们在两个现实世界数据集上评估了我们的Staan,并且实验验证了我们的模型优于最先进的基线。
translated by 谷歌翻译
理解神经动力学的空间和时间特征之间的相互作用可以有助于我们对人脑中信息处理的理解。图形神经网络(GNN)提供了一种新的可能性,可以解释图形结构化信号,如在复杂的大脑网络中观察到的那些。在我们的研究中,我们比较不同的时空GNN架构,并研究他们复制在功能MRI(FMRI)研究中获得的神经活动分布的能力。我们评估GNN模型在MRI研究中各种场景的性能,并将其与VAR模型进行比较,目前主要用于定向功能连接分析。我们表明,即使当可用数据稀缺时,基于基于解剖学基板的局部功能相互作用,基于GNN的方法也能够鲁棒地规模到大型网络研究。通过包括作为信息衬底的解剖连接以进行信息传播,这种GNN还提供了关于指向连接性分析的多模阶视角,提供了研究脑网络中的时空动态的新颖可能性。
translated by 谷歌翻译
The classification of sleep stages plays a crucial role in understanding and diagnosing sleep pathophysiology. Sleep stage scoring relies heavily on visual inspection by an expert that is time consuming and subjective procedure. Recently, deep learning neural network approaches have been leveraged to develop a generalized automated sleep staging and account for shifts in distributions that may be caused by inherent inter/intra-subject variability, heterogeneity across datasets, and different recording environments. However, these networks ignore the connections among brain regions, and disregard the sequential connections between temporally adjacent sleep epochs. To address these issues, this work proposes an adaptive product graph learning-based graph convolutional network, named ProductGraphSleepNet, for learning joint spatio-temporal graphs along with a bidirectional gated recurrent unit and a modified graph attention network to capture the attentive dynamics of sleep stage transitions. Evaluation on two public databases: the Montreal Archive of Sleep Studies (MASS) SS3; and the SleepEDF, which contain full night polysomnography recordings of 62 and 20 healthy subjects, respectively, demonstrates performance comparable to the state-of-the-art (Accuracy: 0.867;0.838, F1-score: 0.818;0.774 and Kappa: 0.802;0.775, on each database respectively). More importantly, the proposed network makes it possible for clinicians to comprehend and interpret the learned connectivity graphs for sleep stages.
translated by 谷歌翻译
Neuroomaging的最新进展以及网络数据统计学习中的算法创新提供了一种独特的途径,可以集成大脑结构和功能,从而有助于揭示系统水平的一些大脑组织原则。在此方向上,我们通过曲线图编码器 - 解码器系统制定了一种模拟脑结构连接(SC)和功能连接(FC)之间的关系的监督图形表示学习框架,其中SC用作预测经验FC的输入。训练图卷积编码器捕获模拟实际神经通信的大脑区域之间的直接和间接相互作用,以及集成结构网络拓扑和节点(即,区域特定的)属性的信息。编码器学习节点级SC嵌入,它们组合以生成用于重建经验FC网络的(全大脑)图级表示。所提出的端到端模型利用多目标损失函数来共同重建FC网络,并学习用于下游主题的SC-To-Fc映射的判别图表表示(即,图形级)分类。综合实验表明,所述关系的学习表现从受试者的脑网络的内在属性中捕获有价值的信息,并导致提高对来自人类连接项目的大量重型饮酒者和非饮酒者的准确性提高。我们的工作提供了关于脑网络之间关系的新见解,支持使用图形表示学习的有希望的前景,了解有关人脑活动和功能的更多信息。
translated by 谷歌翻译
由于运输网络中复杂的时空依赖性,准确的交通预测是智能运输系统中一项艰巨的任务。许多现有的作品利用复杂的时间建模方法与图形卷积网络(GCN)合并,以捕获短期和长期时空依赖性。但是,这些具有复杂设计的分离模块可以限制时空表示学习的有效性和效率。此外,大多数以前的作品都采用固定的图形构造方法来表征全局时空关系,这限制了模型在不同时间段甚至不同的数据方案中的学习能力。为了克服这些局限性,我们提出了一个自动扩张的时空同步图网络,称为Auto-DSTSGN用于流量预测。具体而言,我们设计了自动扩张的时空同步图(自动-DSTSG)模块,以捕获短期和长期时空相关性,通过在增加顺序的扩张因子中堆叠更深的层。此外,我们提出了一种图形结构搜索方法,以自动构建可以适应不同数据方案的时空同步图。在四个现实世界数据集上进行的广泛实验表明,与最先进的方法相比,我们的模型可以取得约10%的改善。源代码可在https://github.com/jinguangyin/auto-dstsgn上找到。
translated by 谷歌翻译