大脑区域之间的功能连通性(FC)通常是通过应用于功能磁共振成像(FMRI)数据的统计依赖度量来估计的。所得的功能连接矩阵(FCM)通常用于表示脑图的邻接矩阵。最近,图形神经网络(GNN)已成功应用于FCM,以学习脑图表示。但是,现有GNN方法的一个普遍局限性是,它们要求在模型训练之前知道图形邻接矩阵。因此,隐含地假设数据的基础依赖性结构已知。不幸的是,对于fMRI而言,情况并非如此,因为哪种统计度量的选择最能代表数据的依赖性结构是非平凡的。同样,大多数GNN应用于功能磁共振成像,FC都会随着时间的推移而静态,这与神经科学的证据相反,表明功能性脑网络是随时间变化且动态的。这些复合问题可能会对GNN学习脑图表示的能力产生不利影响。作为解决方案,我们提出了动态大脑图结构学习(DBGSL),这是一种学习fMRI数据最佳时变依赖性结构的监督方法。具体而言,DBGSL通过应用于大脑区域嵌入的时空注意力从fMRI时间表中学习了动态图。然后将所得的图馈送到空间GNN中,以学习分类的图表。大型休息状态以及性别分类任务的fMRI数据集的实验表明,DBGSL可以实现最新的性能。此外,对学习动态图的分析突出了与现有神经科学文献的发现相符的预测相关大脑区域。
translated by 谷歌翻译
Graph neural networks (GNNs) have been successfully applied to early mild cognitive impairment (EMCI) detection, with the usage of elaborately designed features constructed from blood oxygen level-dependent (BOLD) time series. However, few works explored the feasibility of using BOLD signals directly as features. Meanwhile, existing GNN-based methods primarily rely on hand-crafted explicit brain topology as the adjacency matrix, which is not optimal and ignores the implicit topological organization of the brain. In this paper, we propose a spatial temporal graph convolutional network with a novel graph structure self-learning mechanism for EMCI detection. The proposed spatial temporal graph convolution block directly exploits BOLD time series as input features, which provides an interesting view for rsfMRI-based preclinical AD diagnosis. Moreover, our model can adaptively learn the optimal topological structure and refine edge weights with the graph structure self-learning mechanism. Results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database show that our method outperforms state-of-the-art approaches. Biomarkers consistent with previous studies can be extracted from the model, proving the reliable interpretability of our method.
translated by 谷歌翻译
多变量时间序列预测是一个具有挑战性的任务,因为数据涉及长期和短期模式的混合,具有变量之间的动态时空依赖性。现有图形神经网络(GNN)通常与预定义的空间图或学习的固定邻接图模拟多变量关系。它限制了GNN的应用,并且无法处理上述挑战。在本文中,我们提出了一种新颖的框架,即静态和动态图形学习 - 神经网络(SDGL)。该模型分别从数据获取静态和动态图形矩阵分别为模型长期和短期模式。开发静态Matric以通过节点嵌入捕获固定的长期关联模式,并利用图规律性来控制学习静态图的质量。为了捕获变量之间的动态依赖性,我们提出了基于改变节点特征和静态节点Embeddings生成时变矩阵的动态图。在该方法中,我们将学习的静态图信息作为感应偏置集成为诱导动态图和局部时空模式更好。广泛的实验是在两个交通数据集中进行,具有额外的结构信息和四个时间序列数据集,这表明我们的方法在几乎所有数据集上实现了最先进的性能。如果纸张被接受,我将在GitHub上打开源代码。
translated by 谷歌翻译
在大脑中找到适当的动态活动的适当表示对于许多下游应用至关重要。由于其高度动态的性质,暂时平均fMRI(功能磁共振成像)只能提供狭窄的脑活动视图。以前的作品缺乏学习和解释大脑体系结构中潜在动态的能力。本文构建了一个有效的图形神经网络模型,该模型均包含了从DWI(扩散加权成像)获得的区域映射的fMRI序列和结构连接性作为输入。我们通过学习样品水平的自适应邻接矩阵并进行新型多分辨率内群平滑来发现潜在大脑动力学的良好表示。我们还将输入归因于具有集成梯度的输入,这使我们能够针对每个任务推断(1)高度涉及的大脑连接和子网络,(2)成像序列的时间键帧,这些成像序列表征了任务,以及(3)歧视单个主体的子网络。这种识别特征在异质任务和个人中表征信号状态的关键子网的能力对神经科学和其他科学领域至关重要。广泛的实验和消融研究表明,我们提出的方法在空间 - 周期性图信号建模中的优越性和效率,具有对脑动力学的深刻解释。
translated by 谷歌翻译
Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic. A basic assumption behind multivariate time series forecasting is that its variables depend on one another but, upon looking closely, it's fair to say that existing methods fail to fully exploit latent spatial dependencies between pairs of variables. In recent years, meanwhile, graph neural networks (GNNs) have shown high capability in handling relational dependencies. GNNs require well-defined graph structures for information propagation which means they cannot be applied directly for multivariate time series where the dependencies are not known in advance. In this paper, we propose a general graph neural network framework designed specifically for multivariate time series data. Our approach automatically extracts the uni-directed relations among variables through a graph learning module, into which external knowledge like variable attributes can be easily integrated. A novel mix-hop propagation layer and a dilated inception layer are further proposed to capture the spatial and temporal dependencies within the time series. The graph learning, graph convolution, and temporal convolution modules are jointly learned in an end-to-end framework. Experimental results show that our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information. CCS CONCEPTS• Computing methodologies → Neural networks; Artificial intelligence.
translated by 谷歌翻译
理解神经动力学的空间和时间特征之间的相互作用可以有助于我们对人脑中信息处理的理解。图形神经网络(GNN)提供了一种新的可能性,可以解释图形结构化信号,如在复杂的大脑网络中观察到的那些。在我们的研究中,我们比较不同的时空GNN架构,并研究他们复制在功能MRI(FMRI)研究中获得的神经活动分布的能力。我们评估GNN模型在MRI研究中各种场景的性能,并将其与VAR模型进行比较,目前主要用于定向功能连接分析。我们表明,即使当可用数据稀缺时,基于基于解剖学基板的局部功能相互作用,基于GNN的方法也能够鲁棒地规模到大型网络研究。通过包括作为信息衬底的解剖连接以进行信息传播,这种GNN还提供了关于指向连接性分析的多模阶视角,提供了研究脑网络中的时空动态的新颖可能性。
translated by 谷歌翻译
多变量时间序列预测,分析历史时序序列以预测未来趋势,可以有效地帮助决策。 MTS中变量之间的复杂关系,包括静态,动态,可预测和潜在的关系,使得可以挖掘MTS的更多功能。建模复杂关系不仅是表征潜在依赖性的必要条件以及建模时间依赖性,而且在MTS预测任务中也带来了极大的挑战。然而,现有方法主要关注模拟MTS变量之间的某些关系。在本文中,我们提出了一种新的端到端深度学习模型,通过异构图形神经网络(MTHETGNN)称为多变量时间序列预测。为了表征变量之间的复杂关系,在MTHETGNN中设计了一个关系嵌入模块,其中每个变量被视为图形节点,并且每种类型的边缘表示特定的静态或动态关系。同时,引入了时间嵌入模块的时间序列特征提取,其中涉及具有不同感知尺度的卷积神经网络(CNN)滤波器。最后,采用异质图形嵌入模块来处理由两个模块产生的复杂结构信息。来自现实世界的三个基准数据集用于评估所提出的MTHETGNN。综合实验表明,MTHETGNN在MTS预测任务中实现了最先进的结果。
translated by 谷歌翻译
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
translated by 谷歌翻译
How can we augment a dynamic graph for improving the performance of dynamic graph neural networks? Graph augmentation has been widely utilized to boost the learning performance of GNN-based models. However, most existing approaches only enhance spatial structure within an input static graph by transforming the graph, and do not consider dynamics caused by time such as temporal locality, i.e., recent edges are more influential than earlier ones, which remains challenging for dynamic graph augmentation. In this work, we propose TiaRa (Time-aware Random Walk Diffusion), a novel diffusion-based method for augmenting a dynamic graph represented as a discrete-time sequence of graph snapshots. For this purpose, we first design a time-aware random walk proximity so that a surfer can walk along the time dimension as well as edges, resulting in spatially and temporally localized scores. We then derive our diffusion matrices based on the time-aware random walk, and show they become enhanced adjacency matrices that both spatial and temporal localities are augmented. Throughout extensive experiments, we demonstrate that TiaRa effectively augments a given dynamic graph, and leads to significant improvements in dynamic GNN models for various graph datasets and tasks.
translated by 谷歌翻译
本文旨在统一非欧几里得空间中的空间依赖性和时间依赖性,同时捕获流量数据的内部空间依赖性。对于具有拓扑结构的时空属性实体,时空是连续的和统一的,而每个节点的当前状态都受到每个邻居的变异时期的邻居的过去状态的影响。大多数用于流量预测研究的空间依赖性和时间相关性的空间神经网络在处理中分别损害了时空完整性,而忽略了邻居节点的时间依赖期可以延迟和动态的事实。为了建模这种实际条件,我们提出了一种新型的空间 - 周期性图神经网络,将空间和时间视为不可分割的整体,以挖掘时空图,同时通过消息传播机制利用每个节点的发展时空依赖性。进行消融和参数研究的实验已经验证了拟议的遍及术的有效性,并且可以从https://github.com/nnzhan/traversenet中找到详细的实现。
translated by 谷歌翻译
由于动态和复杂的时空依赖性,交通预测具有挑战性。但是,现有方法仍然受到两个关键局限性。首先,许多方法通常使用静态预定义或自适应的空间图来捕获流量系统中动态的时空依赖性,这限制了灵活性,并且仅捕获了整个时间的共享模式,从而导致了次优性能。此外,大多数方法在每个时间步骤中都单独和独立地考虑地面真理与预测之间的绝对误差,这无法维持整体时间序列的全球属性和统计数据,并导致地面真相和预测之间的趋势差异。为此,在本文中,我们提出了一个动态自适应和对抗图卷积网络(DAAGCN),该网络将图形卷积网络(GCN)与生成的对抗网络(GANS)结合在一起,以进行流量预测。具体而言,DAAGCN利用带栅极模块的通用范式将时间变化的嵌入与节点嵌入集成在一起,以生成动态自适应图,以在每个时间步骤中推断空间 - 周期依赖性。然后,设计了两个歧视因子,以维持预测时间序列的全局属性的一致性,并在序列和图形级别上具有地面真相。在四个基准数据集上进行的广泛实验表明,DAAGCN的表现平均比最新的5.05%,3.80%和5.27%在MAE,RMSE和MAPE方面,同时加快收敛性高达9倍。代码可从https://github.com/juyongjiang/daagcn获得。
translated by 谷歌翻译
随着传感技术的进步,多元时间序列分类(MTSC)最近受到了相当大的关注。基于深度学习的MTSC技术主要依赖于卷积或经常性神经网络,主要涉及单时间序列的时间依赖性。结果,他们努力直接在多变量变量中表达成对依赖性。此外,基于图形神经网络(GNNS)的当前空间 - 时间建模(例如,图形分类)方法本质上是平的,并且不能以分层方式聚合集线器数据。为了解决这些限制,我们提出了一种基于新的图形汇集框架MTPOOL,以获得MTS的表现力全球表示。我们首先通过采用通过图形结构学习模块的相互作用来将MTS切片转换为曲线图,并通过时间卷积模块获得空间 - 时间图节点特征。为了获得全局图形级表示,我们设计了基于“编码器 - 解码器”的变形图池池模块,用于为群集分配创建自适应质心。然后我们将GNN和我们所提出的变分图层汇集层组合用于联合图表示学习和图形粗糙化,之后该图逐渐赋予一个节点。最后,可差异化的分类器将此粗糙的表示来获取最终预测的类。 10个基准数据集的实验表明MTPOOL优于MTSC任务中最先进的策略。
translated by 谷歌翻译
Neuroomaging的最新进展以及网络数据统计学习中的算法创新提供了一种独特的途径,可以集成大脑结构和功能,从而有助于揭示系统水平的一些大脑组织原则。在此方向上,我们通过曲线图编码器 - 解码器系统制定了一种模拟脑结构连接(SC)和功能连接(FC)之间的关系的监督图形表示学习框架,其中SC用作预测经验FC的输入。训练图卷积编码器捕获模拟实际神经通信的大脑区域之间的直接和间接相互作用,以及集成结构网络拓扑和节点(即,区域特定的)属性的信息。编码器学习节点级SC嵌入,它们组合以生成用于重建经验FC网络的(全大脑)图级表示。所提出的端到端模型利用多目标损失函数来共同重建FC网络,并学习用于下游主题的SC-To-Fc映射的判别图表表示(即,图形级)分类。综合实验表明,所述关系的学习表现从受试者的脑网络的内在属性中捕获有价值的信息,并导致提高对来自人类连接项目的大量重型饮酒者和非饮酒者的准确性提高。我们的工作提供了关于脑网络之间关系的新见解,支持使用图形表示学习的有希望的前景,了解有关人脑活动和功能的更多信息。
translated by 谷歌翻译
深度学习模型已使高维功能MRI(fMRI)数据的分析能够跃升。然而,许多以前的方法对各种时间尺度的上下文表示次优敏感。在这里,我们提出了螺栓,这是一种血氧级依赖性变压器模型,用于分析多变量fMRI时间序列。螺栓利用了一系列具有新型融合窗户注意机制的变压器编码器。编码是在时间序列中在时间重叠的窗口上执行的,以捕获本地表示。为了暂时地集成信息,在每个窗口中的基本令牌和来自附近窗口的边缘令牌之间计算交叉窗口的注意力。要逐渐从本地表示,窗口重叠的程度以及边缘令牌的数量在整个级联反应中逐渐增加。最后,采用了一种新颖的跨窗口正则化来使整个时间序列之间的高级分类特征对齐。大规模公共数据集的全面实验证明了螺栓与最先进方法的出色性能。此外,解释性分析以确定具有里程碑意义的时间点和区域,这些时间点和区域最大程度地促进模型的决策证实了文献中突出的神经科学发现。
translated by 谷歌翻译
Neuropsychological studies suggest that co-operative activities among different brain functional areas drive high-level cognitive processes. To learn the brain activities within and among different functional areas of the brain, we propose LGGNet, a novel neurologically inspired graph neural network, to learn local-global-graph representations of electroencephalography (EEG) for Brain-Computer Interface (BCI). The input layer of LGGNet comprises a series of temporal convolutions with multi-scale 1D convolutional kernels and kernel-level attentive fusion. It captures temporal dynamics of EEG which then serves as input to the proposed local and global graph-filtering layers. Using a defined neurophysiologically meaningful set of local and global graphs, LGGNet models the complex relations within and among functional areas of the brain. Under the robust nested cross-validation settings, the proposed method is evaluated on three publicly available datasets for four types of cognitive classification tasks, namely, the attention, fatigue, emotion, and preference classification tasks. LGGNet is compared with state-of-the-art methods, such as DeepConvNet, EEGNet, R2G-STNN, TSception, RGNN, AMCNN-DGCN, HRNN and GraphNet. The results show that LGGNet outperforms these methods, and the improvements are statistically significant (p<0.05) in most cases. The results show that bringing neuroscience prior knowledge into neural network design yields an improvement of classification performance. The source code can be found at https://github.com/yi-ding-cs/LGG
translated by 谷歌翻译
多变量时间序列(MTS)预测在智能应用的自动化和优化中起着重要作用。这是一个具有挑战性的任务,因为我们需要考虑复杂的变量依赖关系和可变间依赖关系。现有的作品仅在单个可变依赖项的帮助下学习时间模式。然而,许多真实世界MTS中有多种时间模式。单个可变间依赖项使模型更倾向于学习一种类型的突出和共享的时间模式。在本文中,我们提出了一个多尺度自适应图形神经网络(MOLDN)来解决上述问题。 MOLDN利用多尺度金字塔网络,以在不同的时间尺度上保留潜在的时间依赖关系。由于可变间依赖关系可以在不同的时间尺度下不同,所以自适应图学习模块被设计为在没有预先定义的前沿的情况下推断规模特定的可变依赖关系。鉴于多尺度特征表示和规模特定的可变间依赖关系,引入了一个多尺度的时间图神经网络,以共同模拟帧内依赖性和可变间依赖性。之后,我们开发一个尺度明智的融合模块,以在不同时间尺度上有效地促进协作,并自动捕获贡献的时间模式的重要性。四个真实数据集的实验表明,Magnn在各种设置上表明了最先进的方法。
translated by 谷歌翻译
脑电图(EEG)是一种有用的方法,可以在多媒体消费期间隐式监控用户感知状态。基于EEG的监测的实际使用的主要挑战之一是在脑电图分类中实现令人满意的准确性。不同脑区之间的连接是脑电图分类的重要属性。但是,如何定义给定任务的连接结构仍然是一个打开问题,因为没有关于连接结构应该如何最大化分类性能的实践。在本文中,我们提出了一种基于EEG的情绪视频分类的端到端神经网络模型,其可以直接从一组RAW EEG信号提取适当的多层图形结构和信号特征,并使用它们执行分类。实验结果表明,与使用手动定义的连接结构和信号特征的现有方法相比,我们的方法能够提高性能。此外,我们表明,在一致性方面,图形结构提取过程可靠,并且在大脑中发生的情绪感知的角度来看,学习的图形结构具有很大的意义。
translated by 谷歌翻译
时空数据包含丰富的信息,近年来由于许多领域的相关应用程序的快速发展,近年来已广泛研究。例如,医疗机构经常使用与患者不同部位相关的电极来分析具有空间和时间特征富含脑的数据,以进行健康评估和疾病诊断。现有的研究主要使用了深度学习技术,例如卷积神经网络(CNN)或经常性神经网络(RNN)来提取隐藏的时空特征。然而,同时合并相互依存的空间信息和动态时间变化是一项挑战。实际上,对于利用这些时空特征来完成复杂预测任务的模型,它通常需要大量的培训数据才能获得令人满意的模型性能。考虑到上述挑战,我们提出了一个自适应的联合相关性框架,即Fedrel,用于在本文中为时空的图形学习。在将原始时空数据转换为高质量特征之后,框架中的核心动力学间图(DIIG)模块能够使用这些功能来生成能够捕获隐藏拓扑和长期的时空图这些图中的时间相关信息。为了提高模型的概括能力和性能,在保留本地数据隐私的同时,我们还设计了一个相关性驱动的联合学习模块,以利用其模型的细心聚合来利用来自不同参与者的各种数据分布。
translated by 谷歌翻译
在各种下游机器学习任务中,多元时间序列的可靠和有效表示至关重要。在多元时间序列预测中,每个变量都取决于其历史值,并且变量之间也存在相互依存关系。必须设计模型以捕获时间序列之间的内部和相互关系。为了朝着这一目标迈进,我们提出了时间序列注意变压器(TSAT),以进行多元时间序列表示学习。使用TSAT,我们以边缘增强动态图来表示多元时间序列的时间信息和相互依赖性。在动态图中的节点表示,串行中的相关性表示。修改了一种自我注意力的机制,以使用超经验模式分解(SMD)模块捕获序列间的相关性。我们将嵌入式动态图应用于时代序列预测问题,包括两个现实世界数据集和两个基准数据集。广泛的实验表明,TSAT显然在各种预测范围内使用六种最先进的基线方法。我们进一步可视化嵌入式动态图,以说明TSAT的图形表示功能。我们在https://github.com/radiantresearch/tsat上共享代码。
translated by 谷歌翻译
Graph classification is an important area in both modern research and industry. Multiple applications, especially in chemistry and novel drug discovery, encourage rapid development of machine learning models in this area. To keep up with the pace of new research, proper experimental design, fair evaluation, and independent benchmarks are essential. Design of strong baselines is an indispensable element of such works. In this thesis, we explore multiple approaches to graph classification. We focus on Graph Neural Networks (GNNs), which emerged as a de facto standard deep learning technique for graph representation learning. Classical approaches, such as graph descriptors and molecular fingerprints, are also addressed. We design fair evaluation experimental protocol and choose proper datasets collection. This allows us to perform numerous experiments and rigorously analyze modern approaches. We arrive to many conclusions, which shed new light on performance and quality of novel algorithms. We investigate application of Jumping Knowledge GNN architecture to graph classification, which proves to be an efficient tool for improving base graph neural network architectures. Multiple improvements to baseline models are also proposed and experimentally verified, which constitutes an important contribution to the field of fair model comparison.
translated by 谷歌翻译