稀疏深度测量在许多应用中广泛可用,例如增强现实,视觉惯性机器人和机器人,配备低成本深度传感器。虽然这种稀疏的深度样本适用于运动跟踪等某些应用,但是完整的深度图通常优选用于更广泛的应用,例如3D对象识别,三维重建和自主驾驶。尽管近期从具有更深的神经网络的单个RGB图像深度预测的进步,但现有方法不会产生可靠的实际使用结果。在这项工作中,我们提出了一种具有后优化后的神经网络,它将RGB图像和稀疏深度样本作为输入,并预测完整的深度图。我们提出了三项主要贡献来推进最先进的:一个名为EDNET的改进的骨干网络架构,一个语义边缘加权损失功能和语义网格变形优化方法。我们的评估结果优于在室内和室外数据集中一致地表达现有的工作,并且在NYU-Deaft-V2数据集上的200个稀疏样本的相同设置下,显着降低平均平均误差高达19.5%。
translated by 谷歌翻译
Our long term goal is to use image-based depth completion to quickly create 3D models from sparse point clouds, e.g. from SfM or SLAM. Much progress has been made in depth completion. However, most current works assume well distributed samples of known depth, e.g. Lidar or random uniform sampling, and perform poorly on uneven samples, such as from keypoints, due to the large unsampled regions. To address this problem, we extend CSPN with multiscale prediction and a dilated kernel, leading to much better completion of keypoint-sampled depth. We also show that a model trained on NYUv2 creates surprisingly good point clouds on ETH3D by completing sparse SfM points.
translated by 谷歌翻译
深度完成旨在预测从深度传感器(例如Lidars)中捕获的极稀疏图的密集像素深度。它在各种应用中起着至关重要的作用,例如自动驾驶,3D重建,增强现实和机器人导航。基于深度学习的解决方案已经证明了这项任务的最新成功。在本文中,我们首次提供了全面的文献综述,可帮助读者更好地掌握研究趋势并清楚地了解当前的进步。我们通过通过对现有方法进行分类的新型分类法提出建议,研究网络体系结构,损失功能,基准数据集和学习策略的设计方面的相关研究。此外,我们在包括室内和室外数据集(包括室内和室外数据集)上进行了三个广泛使用基准测试的模型性能进行定量比较。最后,我们讨论了先前作品的挑战,并为读者提供一些有关未来研究方向的见解。
translated by 谷歌翻译
建立新型观点综合的最近进展后,我们提出了改善单眼深度估计的应用。特别是,我们提出了一种在三个主要步骤中分开的新颖训练方法。首先,单眼深度网络的预测结果被扭转到额外的视点。其次,我们应用一个额外的图像综合网络,其纠正并提高了翘曲的RGB图像的质量。通过最小化像素-WISE RGB重建误差,该网络的输出需要尽可能类似地查看地面真实性视图。第三,我们将相同的单眼深度估计重新应用于合成的第二视图点,并确保深度预测与相关的地面真理深度一致。实验结果证明,我们的方法在Kitti和Nyu-Deaft-V2数据集上实现了最先进的或可比性,具有轻量级和简单的香草U-Net架构。
translated by 谷歌翻译
作为许多自主驾驶和机器人活动的基本组成部分,如自我运动估计,障碍避免和场景理解,单眼深度估计(MDE)引起了计算机视觉和机器人社区的极大关注。在过去的几十年中,已经开发了大量方法。然而,据我们所知,对MDE没有全面调查。本文旨在通过审查1970年至2021年之间发布的197个相关条款来弥补这一差距。特别是,我们为涵盖各种方法的MDE提供了全面的调查,介绍了流行的绩效评估指标并汇总公开的数据集。我们还总结了一些代表方法的可用开源实现,并比较了他们的表演。此外,我们在一些重要的机器人任务中审查了MDE的应用。最后,我们通过展示一些有希望的未来研究方向来结束本文。预计本调查有助于读者浏览该研究领域。
translated by 谷歌翻译
深度是自治车辆以感知障碍的重要信息。由于价格相对较低,单目一体相机的小尺寸,从单个RGB图像的深度估计引起了对研究界的兴趣。近年来,深神经网络(DNN)的应用已经显着提高了单眼深度估计(MDE)的准确性。最先进的方法通常设计在复杂和极其深的网络架构之上,需要更多的计算资源,而不使用高端GPU实时运行。虽然一些研究人员试图加速运行速度,但深度估计的准确性降低,因为压缩模型不代表图像。另外,现有方法使用的特征提取器的固有特性导致产生的特征图中的严重空间信息丢失,这也损害了小型图像的深度估计的精度。在本研究中,我们有动力设计一种新颖且有效的卷积神经网络(CNN),其连续地组装两个浅编码器解码器样式子网,以解决这些问题。特别是,我们强调MDE准确性和速度之间的权衡。已经在NYU深度V2,Kitti,Make3D和虚幻数据集上进行了广泛的实验。与拥有极其深层和复杂的架构的最先进的方法相比,所提出的网络不仅可以实现可比性的性能,而且在单个不那么强大的GPU上以更快的速度运行。
translated by 谷歌翻译
由于可靠的3D空间信息,LIDAR传感器广泛用于自动驾驶。然而,LIDAR的数据稀疏,LIDAR的频率低于相机的频率。为了在空间和时间上生成密集点云,我们提出了第一个将来的伪激光框架预测网络。鉴于连续稀疏深度图和RGB图像,我们首先根据动态运动信息粗略地预测未来的密集深度图。为了消除光流量估计的误差,提出了帧间聚合模块,以使具有自适应权重的翘曲深度图熔断。然后,我们使用静态上下文信息优化预测的密集深度图。通过将预测的密集深度图转换为相应的3D点云,可以获得未来的伪激光镜帧。实验结果表明,我们的方法优于流行基准基准的现有解决方案。
translated by 谷歌翻译
尽管在过去几年中取得了重大进展,但使用单眼图像进行深度估计仍然存在挑战。首先,训练度量深度预测模型的训练是不算气的,该预测模型可以很好地推广到主要由于训练数据有限的不同场景。因此,研究人员建立了大规模的相对深度数据集,这些数据集更容易收集。但是,由于使用相对深度数据训练引起的深度转移,现有的相对深度估计模型通常无法恢复准确的3D场景形状。我们在此处解决此问题,并尝试通过对大规模相对深度数据进行训练并估算深度转移来估计现场形状。为此,我们提出了一个两阶段的框架,该框架首先将深度预测到未知量表并从单眼图像转移,然后利用3D点云数据来预测深度​​移位和相机的焦距,使我们能够恢复恢复3D场景形状。由于两个模块是单独训练的,因此我们不需要严格配对的培训数据。此外,我们提出了图像级的归一化回归损失和基于正常的几何损失,以通过相对深度注释来改善训练。我们在九个看不见的数据集上测试我们的深度模型,并在零拍摄评估上实现最先进的性能。代码可用:https://git.io/depth
translated by 谷歌翻译
透明的物体广泛用于工业自动化和日常生活中。但是,强大的视觉识别和对透明物体的感知一直是一个主要挑战。目前,由于光的折射和反射,大多数商用级深度摄像机仍然不擅长感知透明物体的表面。在这项工作中,我们从单个RGB-D输入中提出了一种基于变压器的透明对象深度估计方法。我们观察到,变压器的全球特征使得更容易提取上下文信息以执行透明区域的深度估计。此外,为了更好地增强细粒度的特征,功能融合模块(FFM)旨在帮助连贯的预测。我们的经验证据表明,与以前的最新基于卷积的数据集相比,我们的模型在最近的流行数据集中有了重大改进,例如RMSE增长25%,RER增长21%。广泛的结果表明,我们的基于变压器的模型可以更好地汇总对象的RGB和不准确的深度信息,以获得更好的深度表示。我们的代码和预培训模型将在https://github.com/yuchendoudou/tode上找到。
translated by 谷歌翻译
Predicting depth is an essential component in understanding the 3D geometry of a scene. While for stereo images local correspondence suffices for estimation, finding depth relations from a single image is less straightforward, requiring integration of both global and local information from various cues. Moreover, the task is inherently ambiguous, with a large source of uncertainty coming from the overall scale. In this paper, we present a new method that addresses this task by employing two deep network stacks: one that makes a coarse global prediction based on the entire image, and another that refines this prediction locally. We also apply a scale-invariant error to help measure depth relations rather than scale. By leveraging the raw datasets as large sources of training data, our method achieves state-of-the-art results on both NYU Depth and KITTI, and matches detailed depth boundaries without the need for superpixelation.
translated by 谷歌翻译
从单目视频重建3D网格的关键元素之一是生成每个帧的深度图。然而,在结肠镜检查视频重建的应用中,产生良好质量的深度估计是具有挑战性的。神经网络可以容易地被光度分散注意力欺骗,或者不能捕获结肠表面的复杂形状,预测导致破碎网格的缺陷形状。旨在从根本上提高结肠镜检查3D重建的深度估计质量,在这项工作中,我们设计了一系列培训损失来应对结肠镜检查数据的特殊挑战。为了更好的培训,使用深度和表面正常信息开发了一组几何一致性目标。而且,经典的光度损耗延伸,具有特征匹配以补偿照明噪声。随着足够强大的培训损失,我们的自我监督框架命名为COLLE,与利用先前的深度知识相比,我们的自我监督框架能够产生更好的结肠镜检查数据地图。用于重建,我们的网络能够实时重建高质量的结肠网格,而无需任何后处理,使其成为第一个在临床上适用。
translated by 谷歌翻译
随着深度学习的出现,估计来自单个RGB图像的深度最近受到了很多关注,能够赋予许多不同的应用,从用于计算电影的机器人的路径规划范围。尽管如此,虽然深度地图完全可靠,但对象不连续的估计仍然远非令人满意。这可以有助于卷积运营商自然地聚集在对象不连续性的特征的事实中,导致平滑的过渡而不是明确的边界。因此,为了规避这个问题,我们提出了一种新颖的卷积运营商,明确地定制,以避免不同对象部件的特征聚合。特别地,我们的方法基于借助于超像素估计每个部分深度值。所提出的卷积运算符,我们将“实例卷积”,然后仅在估计的超像素的基础上单独考虑每个对象部分。我们对NYUV2以及IBIMS数据集的评估清楚地展示了在估计遮挡边界周围估算深度的经典卷积上的实例卷积的优越性,同时在其他地方产生了可比结果。代码将在接受时公开提供。
translated by 谷歌翻译
Monocular depth prediction plays a crucial role in understanding 3D scene geometry. Although recent methods have achieved impressive progress in evaluation metrics such as the pixel-wise relative error, most methods neglect the geometric constraints in the 3D space. In this work, we show the importance of the high-order 3D geometric constraints for depth prediction. By designing a loss term that enforces one simple type of geometric constraints, namely, virtual normal directions determined by randomly sampled three points in the reconstructed 3D space, we can considerably improve the depth prediction accuracy. Significantly, the byproduct of this predicted depth being sufficiently accurate is that we are now able to recover good 3D structures of the scene such as the point cloud and surface normal directly from the depth, eliminating the necessity of training new sub-models as was previously done. Experiments on two benchmarks: NYU Depth-V2 and KITTI demonstrate the effectiveness of our method and state-of-the-art performance.
translated by 谷歌翻译
整体场景的理解对于自动机器的性能至关重要。在本文中,我们提出了一个新的端到端模型,用于共同执行语义细分和深度完成。最近的绝大多数方法已发展为独立任务的语义细分和深度完成。我们的方法取决于RGB和稀疏深度作为我们模型的输入,并产生密集的深度图和相应的语义分割图像。它由特征提取器,深度完成分支,语义分割分支和联合分支组成,该分支进一步处理语义和深度信息。在Virtual Kitti 2数据集上进行的实验,证明并提供了进一步的证据,即在多任务网络中将两个任务,语义细分和深度完成都结合在一起,可以有效地提高每个任务的性能。代码可从https://github.com/juanb09111/smantic Depth获得。
translated by 谷歌翻译
现有的单眼深度估计方法在不同的场景中实现了出色的鲁棒性,但它们只能检索仿射不变的深度,最多可达到未知的规模和变化。但是,在一些基于视频的场景中,例如视频中的视频深度估计和3D场景重建,驻留在人均预测中的未知量表和偏移可能会导致深度不一致。为了解决这个问题,我们提出了一种局部加权的线性回归方法,以恢复比例并以非常稀疏的锚点的转移,从而确保沿连续帧的比例一致性。广泛的实验表明,我们的方法可以在几个零击基准测试中最多将现有最新方法的性能提高50%。此外,我们合并了超过630万个RGBD图像,以训练强大而健壮的深度模型。我们产生的Resnet50-Backbone模型甚至胜过最先进的DPT VIT-LALGE模型。结合基于几何的重建方法,我们制定了一种新的密集3D场景重建管道,该管道受益于稀疏点的比例一致性和单眼方法的鲁棒性。通过对视频进行简单的人均预测,可以恢复准确的3D场景形状。
translated by 谷歌翻译
近年来,尤其是在户外环境中,自我监督的单眼深度估计已取得了重大进展。但是,在大多数现有数据被手持设备捕获的室内场景中,深度预测结果无法满足。与室外环境相比,使用自我监督的方法估算室内环境的单眼视频深度,导致了两个额外的挑战:(i)室内视频序列的深度范围在不同的框架上有很大变化,使深度很难进行。网络以促进培训的一致深度线索; (ii)用手持设备记录的室内序列通常包含更多的旋转运动,这使姿势网络难以预测准确的相对摄像头姿势。在这项工作中,我们通过对这些挑战进行特殊考虑并巩固了一系列良好实践,以提高自我监督的单眼深度估计室内环境的表现,从而提出了一种新颖的框架单声道++。首先,提出了具有基于变压器的比例回归网络的深度分解模块,以明确估算全局深度尺度因子,预测的比例因子可以指示最大深度值。其次,我们不像以前的方法那样使用单阶段的姿势估计策略,而是建议利用残留姿势估计模块来估计相对摄像机在连续迭代的跨帧中构成。第三,为了为我们的残留姿势估计模块纳入广泛的坐标指南,我们建议直接在输入上执行坐标卷积编码,以实现姿势网络。提出的方法在各种基准室内数据集(即Euroc Mav,Nyuv2,扫描仪和7片)上进行了验证,证明了最先进的性能。
translated by 谷歌翻译
单眼深度估计和语义分割是场景理解的两个基本目标。由于任务交互的优点,许多作品研究了联合任务学习算法。但是,大多数现有方法都无法充分利用语义标签,忽略提供的上下文结构,并且仅使用它们来监督分段拆分的预测,这限制了两个任务的性能。在本文中,我们提出了一个网络注入了上下文信息(CI-Net)来解决问题。具体而言,我们在编码器中引入自我关注块以产生注意图。通过由语义标签创建的理想注意图的监督,网络嵌入了上下文信息,使得它可以更好地理解场景并利用相关特征来进行准确的预测。此外,构造了一个特征共享模块,以使任务特征深入融合,并且设计了一致性损耗,以使特征相互引导。我们在NYU-Deaft-V2和Sun-RGBD数据集上评估所提出的CI-Net。实验结果验证了我们所提出的CI-Net可以有效提高语义分割和深度估计的准确性。
translated by 谷歌翻译
This paper addresses the problem of estimating the depth map of a scene given a single RGB image. We propose a fully convolutional architecture, encompassing residual learning, to model the ambiguous mapping between monocular images and depth maps. In order to improve the output resolution, we present a novel way to efficiently learn feature map up-sampling within the network. For optimization, we introduce the reverse Huber loss that is particularly suited for the task at hand and driven by the value distributions commonly present in depth maps. Our model is composed of a single architecture that is trained end-to-end and does not rely on post-processing techniques, such as CRFs or other additional refinement steps. As a result, it runs in real-time on images or videos. In the evaluation, we show that the proposed model contains fewer parameters and requires fewer training data than the current state of the art, while outperforming all approaches on depth estimation. Code and models are publicly available 5 .
translated by 谷歌翻译
We present a novel neural surface reconstruction method called NeuralRoom for reconstructing room-sized indoor scenes directly from a set of 2D images. Recently, implicit neural representations have become a promising way to reconstruct surfaces from multiview images due to their high-quality results and simplicity. However, implicit neural representations usually cannot reconstruct indoor scenes well because they suffer severe shape-radiance ambiguity. We assume that the indoor scene consists of texture-rich and flat texture-less regions. In texture-rich regions, the multiview stereo can obtain accurate results. In the flat area, normal estimation networks usually obtain a good normal estimation. Based on the above observations, we reduce the possible spatial variation range of implicit neural surfaces by reliable geometric priors to alleviate shape-radiance ambiguity. Specifically, we use multiview stereo results to limit the NeuralRoom optimization space and then use reliable geometric priors to guide NeuralRoom training. Then the NeuralRoom would produce a neural scene representation that can render an image consistent with the input training images. In addition, we propose a smoothing method called perturbation-residual restrictions to improve the accuracy and completeness of the flat region, which assumes that the sampling points in a local surface should have the same normal and similar distance to the observation center. Experiments on the ScanNet dataset show that our method can reconstruct the texture-less area of indoor scenes while maintaining the accuracy of detail. We also apply NeuralRoom to more advanced multiview reconstruction algorithms and significantly improve their reconstruction quality.
translated by 谷歌翻译
从稀疏的LIDAR扫描中恢复密集的深度图像是一个具有挑战性的任务。尽管对稀疏密集深度完成的颜色引导方法的普及,但它们在优化期间平等地处理了像素,忽略了稀疏深度图中的不均匀分布特性和合成的地面真理中的累积异常值。在这项工作中,我们引入了不确定性驱动的损失功能,以提高深度完成的鲁棒性,并处理深度完成的不确定性。具体而言,我们提出了一个明确的不确定性制定,用于与Jeffrey之前的强大深度完成。将参数不确定驱动的损耗引入并转换为对嘈杂或缺少数据的强大的新损耗函数。同时,我们提出了一种多尺度联合预测模型,可以同时预测深度和不确定性地图。估计的不确定性图还用于对具有高不确定性的像素对像素对的自适应预测,导致剩余地图以改进完成结果。我们的方法已经在基蒂深度完成基准上进行了测试,并在Mae,Imae和Irmse指标方面取得了最先进的鲁棒性能。
translated by 谷歌翻译