弱监督指定的实体识别方法训练标签模型,以汇总多个嘈杂标签功能(LFS)的代币注释,而无需看到任何手动注释的标签。为了正常工作,标签模型需要在上下文上识别和强调表现出色的LF,同时降低表现不佳的情况。但是,由于缺乏地面真理,评估LFS是具有挑战性的。为了解决这个问题,我们提出了稀疏条件隐藏的马尔可夫模型(稀疏-CHMM)。稀疏-CHMM并没有将整个发射矩阵视为其他基于HMM的方法,而是专注于估计其对角线元素,这些元素被认为是LFS的可靠性得分。然后将稀疏分数扩展到具有预定义膨胀函数的全面发射矩阵。我们还通过加权XOR分数来增强发射,该分数跟踪LF观察不正确实体的概率。通过三阶段的训练管道通过无监督的学习来优化稀疏-CHMM,从而降低了训练难度并防止模型落入本地Optima。与扳手基准中的基线相比,稀疏-CHMM在五个综合数据集上取得了3.01的平均F1分数提高。实验表明,稀疏-CHMM的每个组件都是有效的,估计的LF可靠性与真实LF F1分数密切相关。
translated by 谷歌翻译
命名实体识别(NER)是自然语言处理中的重要任务。但是,传统的监督NER需要大规模注释的数据集。提出了远处的监督以减轻对数据集的巨大需求,但是以这种方式构建的数据集非常嘈杂,并且存在严重的未标记实体问题。交叉熵(CE)损耗函数对未标记的数据高度敏感,从而导致严重的性能降解。作为替代方案,我们提出了一种称为NRCES的新损失函数,以应对此问题。Sigmoid项用于减轻噪声的负面影响。此外,我们根据样品和训练过程平衡模型的收敛性和噪声耐受性。关于合成和现实世界数据集的实验表明,在严重的未标记实体问题的情况下,我们的方法表现出强大的鲁棒性,从而实现了现实世界数据集的新最新技术。
translated by 谷歌翻译
命名实体识别(ner)旨在标识在非结构化文本中的命名实体的提到,并将它们分类为预定义的命名实体类。尽管基于深度学习的预先训练的语言模型实现了良好的预测性能,但许多域特定的NERTASK仍然需要足够量的标记数据。主动学习(AL)是标签采集问题的一般框架,已用于NER任务,以最大限度地降低注释成本而不会牺牲模型性能。然而,令牌的严重不平衡的课程分布引入了设计有效的NER Querying方法的挑战。我们提出了al句子查询评估函数,这些函数更加关注可能的积极令牌,并评估基于句子和基于令牌的成本评估策略的这些提出的功能。我们还提出了更好的数据驱动的归一化方法来惩罚太长或太短的句子。我们在来自不同域的三个数据集上的实验表明,所提出的方法减少了带有常规方法的更好或可比预测性能的增注令牌的数量。
translated by 谷歌翻译
对于指定的实体识别(NER),基于序列标签和基于跨度的范例大不相同。先前的研究表明,这两个范式具有明显的互补优势,但是据我们所知,很少有模型试图在单个NER模型中利用这些优势。在我们以前的工作中,我们提出了一种称为捆绑学习(BL)的范式来解决上述问题。 BL范式将两个NER范式捆绑在一起,从而使NER模型通过加权总结每个范式的训练损失来共同调整其参数。但是,三个关键问题仍未解决:BL何时起作用? BL为什么工作? BL可以增强现有的最新(SOTA)NER模型吗?为了解决前两个问题,我们实施了三个NER模型,涉及一个基于序列标签的模型-Seqner,Seqner,一个基于跨度的NER模型 - 机器人,以及将Seqner和Spanner捆绑在一起的BL-NER。我们根据来自五个域的11个NER数据集的实验结果得出两个关于这两个问题的结论。然后,我们将BL应用于现有的五个SOTA NER模型,以研究第三期,包括三个基于序列标签的模型和两个基于SPAN的模型。实验结果表明,BL始终提高其性能,表明可以通过将BL纳入当前的SOTA系统来构建新的SOTA NER系统。此外,我们发现BL降低了实体边界和类型预测错误。此外,我们比较了两种常用的标签标签方法以及三种类型的跨度语义表示。
translated by 谷歌翻译
我们引入了综合学习,这是一个原则性的框架,将弱监督集成到机器学习模型的培训过程中。我们的方法共同训练末端模型和标签模型,该模型汇总了多个弱监督源。我们介绍了一个标签模型,该模型可以学会以不同的数据点的方式汇总弱监督源,并考虑训练期间终端模型的性能。我们表明,我们的方法在一组6个基准分类数据集中优于现有的弱学习技术。当出现少量标记的数据和弱监督时,性能的提高既一致又大,并且可靠地获得了2-5点测试F1分数在非整合方法中获得的增长。
translated by 谷歌翻译
人群顺序注释可能是一种有效且具有成本效益的方式,用于构建用于序列标签的大型数据集。不同于标记独立实例,对于人群顺序注释,标签序列的质量取决于注释者在捕获序列中每个令牌的内部依赖性方面的专业知识水平。在本文中,我们提出了与人群(SA-SLC)进行序列标记的序列注释。首先,开发了有条件的概率模型,以共同模拟顺序数据和注释者的专业知识,其中引入分类分布以估计每个注释者在捕获局部和非本地标签依赖性以进行顺序注释时的可靠性。为了加速所提出模型的边缘化,提出了有效的标签序列推理(VLSE)方法,以从人群顺序注释中得出有效的地面真相标签序列。 VLSE从令牌级别中得出了可能的地面真相标签,并在标签序列解码的正向推断中进一步介绍了李子标签。 VLSE减少了候选标签序列的数量,并提高了可能的地面真实标签序列的质量。自然语言处理的几个序列标记任务的实验结果显示了所提出的模型的有效性。
translated by 谷歌翻译
当前独立于域的经典计划者需要问题域和实例作为输入的符号模型,从而导致知识采集瓶颈。同时,尽管深度学习在许多领域都取得了重大成功,但知识是在与符号系统(例如计划者)不兼容的亚符号表示中编码的。我们提出了Latplan,这是一种无监督的建筑,结合了深度学习和经典计划。只有一组未标记的图像对,显示了环境中允许的过渡子集(训练输入),Latplan学习了环境的完整命题PDDL动作模型。稍后,当给出代表初始状态和目标状态(计划输入)的一对图像时,Latplan在符号潜在空间中找到了目标状态的计划,并返回可视化的计划执行。我们使用6个计划域的基于图像的版本来评估LATPLAN:8个插头,15个式嘴,Blockworld,Sokoban和两个LightsOut的变体。
translated by 谷歌翻译
本文对过去二十年来对自然语言生成(NLG)的研究提供了全面的审查,特别是与数据到文本生成和文本到文本生成深度学习方法有关,以及NLG的新应用技术。该调查旨在(a)给出关于NLG核心任务的最新综合,以及该领域采用的建筑;(b)详细介绍各种NLG任务和数据集,并提请注意NLG评估中的挑战,专注于不同的评估方法及其关系;(c)强调一些未来的强调和相对近期的研究问题,因为NLG和其他人工智能领域的协同作用而增加,例如计算机视觉,文本和计算创造力。
translated by 谷歌翻译
通过更换繁琐的手动收集地面真理标签,聚合多个弱监管源(WS)可以缓解多种机器学习应用中的数据标记瓶颈。然而,当前的现有技术不使用任何标记的训练数据的方法需要两个单独的建模步骤:基于WS源的基于WS源的概率潜在变量模型 - 使得在实践中很少 - 之后是下游模型训练。重要的是,建模的第一步不考虑下游模型的性能。为了解决这些警告,我们提出了一种直接学习下游模​​型的端到端方法,通过将其与先前概率后海报的概率标签最大化来直接学习下游模​​型。我们的结果表明,在下游测试集的最终模型性能方面,以及改善弱势监督源之间的依赖性的鲁棒性方面,对先前的工作进行了改进的性能。
translated by 谷歌翻译
我们提出了一种在数据样本集合中共同推断标签的方法,其中每个样本都包含一个观察和对标签的先验信念。通过隐式假设存在一种生成模型,可区分预测因子是后部,我们得出了一个训练目标,该目标允许在弱信念下学习。该配方统一了各种机器学习设置;弱信念可以以嘈杂或不完整的标签形式出现,由辅助输入的不同预测机制给出的可能性,或反映出有关手头问题结构的知识的常识性先验。我们证明了有关各种问题的建议算法:通过负面培训示例进行分类,从排名中学习,弱和自我监督的空中成像细分,视频框架的共段以及粗糙的监督文本分类。
translated by 谷歌翻译
最先进的命名实体识别(NER)模型在很大程度上依赖于完全注释的培训数据。但是,AC可访问的数据通常是不完全注释的,注释者通常缺乏目标域中的全面知识。通常,默认情况下,未注释的代币被认为是非实体,而我们强调这些令牌可能是任何实体的非实体。在这里,我们使用不完整的带注释数据研究NER mod-Eling,其中只有一部分命名实体是la-bel的,并且未标记的令牌被每个可能的标签都刻有多标签。路径可以分散训练模型从金路径(地面真相标签序列)中分散注意力,从而阻碍了学习能力。在本文中,我们提出了称为自适应顶级助攻的Adak-ner,该模型集中在一个较小的可行重新上,其中黄金路径更有可能被宠爱。我们通过广泛的英语和中文数据集证明了UR方法的优势,平均在2003年的F-评分中可以提高2%的速度,而在两个中文数据集中则超过10%,与先前的最新作品相比。
translated by 谷歌翻译
在本文中,我们试图通过引入深度学习模型的句法归纳偏见来建立两所学校之间的联系。我们提出了两个归纳偏见的家族,一个家庭用于选区结构,另一个用于依赖性结构。选区归纳偏见鼓励深度学习模型使用不同的单位(或神经元)分别处理长期和短期信息。这种分离为深度学习模型提供了一种方法,可以从顺序输入中构建潜在的层次表示形式,即更高级别的表示由高级表示形式组成,并且可以分解为一系列低级表示。例如,在不了解地面实际结构的情况下,我们提出的模型学会通过根据其句法结构组成变量和运算符的表示来处理逻辑表达。另一方面,依赖归纳偏置鼓励模型在输入序列中找到实体之间的潜在关系。对于自然语言,潜在关系通常被建模为一个定向依赖图,其中一个单词恰好具有一个父节点和零或几个孩子的节点。将此约束应用于类似变压器的模型之后,我们发现该模型能够诱导接近人类专家注释的有向图,并且在不同任务上也优于标准变压器模型。我们认为,这些实验结果为深度学习模型的未来发展展示了一个有趣的选择。
translated by 谷歌翻译
大数据具有巨大的量,高速度,多样性,价值符合性和不确定性的特征,这些特征带领知识从他们那里学习充满了挑战。随着众包的出现,可以按需获得多功能信息,以便易于参与人群的智慧,以促进知识学习过程。在过去的十三年中,AI社区的研究人员竭尽全力消除人群学习领域的障碍。这份集中的调查论文全面回顾了从系统的角度来研究众包学习的技术进步,其中包括数据,模型和学习过程的三个维度。除了审查现有的重要工作外,本文还特别强调在每个维度上提供一些有希望的蓝图,并讨论从我们过去的研究工作中学到的经验教训,这将为新的研究人员提供道路,并鼓励他们追求新的研究。贡献。
translated by 谷歌翻译
Metric-based meta-learning is one of the de facto standards in few-shot learning. It composes of representation learning and metrics calculation designs. Previous works construct class representations in different ways, varying from mean output embedding to covariance and distributions. However, using embeddings in space lacks expressivity and cannot capture class information robustly, while statistical complex modeling poses difficulty to metric designs. In this work, we use tensor fields (``areas'') to model classes from the geometrical perspective for few-shot learning. We present a simple and effective method, dubbed hypersphere prototypes (HyperProto), where class information is represented by hyperspheres with dynamic sizes with two sets of learnable parameters: the hypersphere's center and the radius. Extending from points to areas, hyperspheres are much more expressive than embeddings. Moreover, it is more convenient to perform metric-based classification with hypersphere prototypes than statistical modeling, as we only need to calculate the distance from a data point to the surface of the hypersphere. Following this idea, we also develop two variants of prototypes under other measurements. Extensive experiments and analysis on few-shot learning tasks across NLP and CV and comparison with 20+ competitive baselines demonstrate the effectiveness of our approach.
translated by 谷歌翻译
注释数据是用于培训和评估机器学习模型的自然语言处理中的重要成分。因此,注释具有高质量是非常理想的。但是,最近的工作表明,几个流行的数据集包含令人惊讶的注释错误或不一致之处。为了减轻此问题,多年来已经设计了许多注释错误检测方法。尽管研究人员表明他们的方法在新介绍的数据集上效果很好,但他们很少将其方法与以前的工作或同一数据集进行比较。这引起了人们对方法的一般表现的强烈关注,并且使他们的优势和劣势很难解决。因此,我们重新实现18种检测潜在注释错误的方法,并在9个英语数据集上对其进行评估,以进行文本分类以及令牌和跨度标签。此外,我们定义了统一的评估设置,包括注释错误检测任务,评估协议和一般最佳实践的新形式化。为了促进未来的研究和可重复性,我们将数据集和实施释放到易于使用和开源软件包中。
translated by 谷歌翻译
社会科学家经常将文本文档分类为使用结果标签作为实证研究的结果或预测指标。自动化文本分类已成为标准工具,因为它需要较少的人体编码。但是,学者们仍然需要许多人类标记的文件来培训自动分类器。为了降低标签成本,我们提出了一种新的文本分类算法,将概率模型与主动学习结合在一起。概率模型同时使用标记和未标记的数据,而主动学习集中在难以分类的文件上标记工作。我们的验证研究表明,我们的算法的分类性能与最先进的方法相当,而计算成本的一部分。此外,我们复制了两篇最近发表的文章,并得出相同的实质性结论,其中仅占这些研究中使用的原始标记数据的一小部分。我们提供ActiveText,一种开源软件来实现我们的方法。
translated by 谷歌翻译
使用机器学习算法从未标记的文本中提取知识可能很复杂。文档分类和信息检索是两个应用程序,可以从无监督的学习(例如文本聚类和主题建模)中受益,包括探索性数据分析。但是,无监督的学习范式提出了可重复性问题。初始化可能会导致可变性,具体取决于机器学习算法。此外,关于群集几何形状,扭曲可能会产生误导。在原因中,异常值和异常的存在可能是决定因素。尽管初始化和异常问题与文本群集和主题建模相关,但作者并未找到对它们的深入分析。这项调查提供了这些亚地区的系统文献综述(2011-2022),并提出了共同的术语,因为类似的程序具有不同的术语。作者描述了研究机会,趋势和开放问题。附录总结了与审查的作品直接或间接相关的文本矢量化,分解和聚类算法的理论背景。
translated by 谷歌翻译
Information Extraction (IE) aims to extract structured information from heterogeneous sources. IE from natural language texts include sub-tasks such as Named Entity Recognition (NER), Relation Extraction (RE), and Event Extraction (EE). Most IE systems require comprehensive understandings of sentence structure, implied semantics, and domain knowledge to perform well; thus, IE tasks always need adequate external resources and annotations. However, it takes time and effort to obtain more human annotations. Low-Resource Information Extraction (LRIE) strives to use unsupervised data, reducing the required resources and human annotation. In practice, existing systems either utilize self-training schemes to generate pseudo labels that will cause the gradual drift problem, or leverage consistency regularization methods which inevitably possess confirmation bias. To alleviate confirmation bias due to the lack of feedback loops in existing LRIE learning paradigms, we develop a Gradient Imitation Reinforcement Learning (GIRL) method to encourage pseudo-labeled data to imitate the gradient descent direction on labeled data, which can force pseudo-labeled data to achieve better optimization capabilities similar to labeled data. Based on how well the pseudo-labeled data imitates the instructive gradient descent direction obtained from labeled data, we design a reward to quantify the imitation process and bootstrap the optimization capability of pseudo-labeled data through trial and error. In addition to learning paradigms, GIRL is not limited to specific sub-tasks, and we leverage GIRL to solve all IE sub-tasks (named entity recognition, relation extraction, and event extraction) in low-resource settings (semi-supervised IE and few-shot IE).
translated by 谷歌翻译
A crucial issue of current text generation models is that they often uncontrollably generate factually inconsistent text with respective of their inputs. Limited by the lack of annotated data, existing works in evaluating factual consistency directly transfer the reasoning ability of models trained on other data-rich upstream tasks like question answering (QA) and natural language inference (NLI) without any further adaptation. As a result, they perform poorly on the real generated text and are biased heavily by their single-source upstream tasks. To alleviate this problem, we propose a weakly supervised framework that aggregates multiple resources to train a precise and efficient factual metric, namely WeCheck. WeCheck first utilizes a generative model to accurately label a real generated sample by aggregating its weak labels, which are inferred from multiple resources. Then, we train the target metric model with the weak supervision while taking noises into consideration. Comprehensive experiments on a variety of tasks demonstrate the strong performance of WeCheck, which achieves a 3.4\% absolute improvement over previous state-of-the-art methods on TRUE benchmark on average.
translated by 谷歌翻译
命名实体识别是一项信息提取任务,可作为其他自然语言处理任务的预处理步骤,例如机器翻译,信息检索和问题答案。命名实体识别能够识别专有名称以及开放域文本中的时间和数字表达式。对于诸如阿拉伯语,阿姆哈拉语和希伯来语之类的闪族语言,由于这些语言的结构严重变化,指定的实体识别任务更具挑战性。在本文中,我们提出了一个基于双向长期记忆的Amharic命名实体识别系统,并带有条件随机字段层。我们注释了一种新的Amharic命名实体识别数据集(8,070个句子,具有182,691个令牌),并将合成少数群体过度采样技术应用于我们的数据集,以减轻不平衡的分类问题。我们命名的实体识别系统的F_1得分为93%,这是Amharic命名实体识别的新最新结果。
translated by 谷歌翻译