加权模型集成(WMI)是一种流行的形式主义,旨在统一混合域概率推断的方法,涉及逻辑和代数约束。尽管最近的工作大量工作,但允许WMI算法随着混合问题的复杂性而扩展仍然是一个挑战。在本文中,我们重点介绍了现有最新解决方案的一些实质性局限性,并开发了一种结合基于SMT的枚举的算法,这是一种有效的正式验证技术,以及对问题结构的有效编码。这使我们的算法避免生成冗余模型,从而获得大量的计算节省。对合成数据集和现实世界数据集进行了广泛的实验评估,这证实了该解决方案比现有替代方案的优势。
translated by 谷歌翻译
回答集编程(ASP)已成为一种流行的和相当复杂的声明问题解决方法。这是由于其具有吸引力的地址解决方案的工作流程,这是可以轻松解决问题解决的方法,即使对于计算机科学外的守护者而言。与此不同,底层技术的高度复杂性使得ASP专家越来越难以将想法付诸实践。有关解决此问题,本教程旨在使用户能够构建自己的基于ASP的系统。更确切地说,我们展示了ASP系统Clingo如何用于扩展ASP和实现定制的专用系统。为此,我们提出了两个替代方案。我们从传统的AI技术开始,并展示元编程如何用于扩展ASP。这是一种相当轻的方法,依赖于Clingo的reation特征来使用ASP本身表达新功能。与此不同,本教程的主要部分使用传统的编程(在Python中)来通过其应用程序编程接口操纵Clingo。这种方法允许改变和控制ASP的整个模型 - 地面解决工作流程。 COMENT of Clingo的新应用程序课程使我们能够通过自定义类似于Clingo中的进程来绘制Clingo的基础架构。例如,我们可能会互动到程序的抽象语法树,控制各种形式的多射击求解,并为外国推论设置理论传播者。另一种横截面结构,跨越元以及应用程序编程是Clingo的中间格式,即指定底层接地器和求解器之间的界面。我们通过示例和几个非琐碎的案例研究说明了本教程的前述概念和技术。
translated by 谷歌翻译
最近已经提出了几个查询和分数来解释对ML模型的个人预测。鉴于ML型号的灵活,可靠和易于应用的可解释性方法,我们预见了需要开发声明语言以自然地指定不同的解释性查询。我们以原则的方式通过源于逻辑,称为箔,允许表达许多简单但重要的解释性查询,并且可以作为更具表现力解释性语言的核心来实现这一语言。我们研究箔片查询的两类ML模型的计算复杂性经常被视为容易解释:决策树和OBDD。由于ML模型的可能输入的数量是尺寸的指数,因此箔评估问题的易易性是精细的,但是可以通过限制模型的结构或正在评估的箔片段来实现。我们还以高级声明语言包装的箔片的原型实施,并执行实验,表明可以在实践中使用这种语言。
translated by 谷歌翻译
形状约束语言(SHACL)是通过验证图表上的某些形状来验证RDF数据的最新W3C推荐语言。先前的工作主要集中在验证问题上,并且仅针对SHACL的简化版本研究了对设计和优化目的至关重要的可满足性和遏制的标准决策问题。此外,SHACL规范不能定义递归定义的约束的语义,这导致文献中提出了几种替代性递归语义。尚未研究这些不同语义与重要决策问题之间的相互作用。在本文中,我们通过向新的一阶语言(称为SCL)的翻译提供了对SHACL的不同特征的全面研究,该语言精确地捕获了SHACL的语义。我们还提出了MSCL,这是SCL的二阶扩展,它使我们能够在单个形式的逻辑框架中定义SHACL的主要递归语义。在这种语言中,我们还提供了对过滤器约束的有效处理,这些滤镜经常在相关文献中被忽略。使用此逻辑,我们为不同的SHACL片段的可满足性和遏制决策问题提供了(联合)可决定性和复杂性结果的详细图。值得注意的是,我们证明这两个问题对于完整的语言都是不可避免的,但是即使面对递归,我们也提供了有趣的功能的可决定性组合。
translated by 谷歌翻译
我们在答案集编程(ASP)中,提供了全面的可变实例化或接地的理论基础。在ASP的建模语言的语义上构建,我们在(固定点)运营商方面介绍了接地算法的正式表征。专用良好的运营商扮演了一个主要作用,其相关模型提供了划定接地结果以及随机简化的语义指导。我们地址呈现出一种竞技级逻辑程序,该程序包含递归聚合,从而达到现有ASP建模语言的范围。这伴随着一个普通算法框架,详细说明递归聚集体的接地。给定的算法基本上对应于ASP接地器Gringo中使用的算法。
translated by 谷歌翻译
域特异性启发式方法是有效解决组合问题的必不可少的技术。当前将特定于域的启发式方法与答案集编程(ASP)集成的方法在处理基于部分分配的非单调指定的启发式方法时,这是不令人满意的。例如,在挑选尚未放入垃圾箱中的物品时,这种启发式方法经常发生。因此,我们介绍了ASP中域特异性启发式方法声明性规范的新颖语法和语义。我们的方法支持启发式陈述,依赖于解决过程中所维持的部分任务,这是不可能的。我们在Alpha中提供了一种实现,该实现使Alpha成为第一个支持声明指定的域特定启发式方法的懒惰的ASP系统。使用两个实际的示例域来证明我们的提议的好处。此外,我们使用我们的方法用A*实施知情},该搜索首次在ASP中解决。 A*应用于两个进一步的搜索问题。实验证实,结合懒惰的ASP解决方案和我们的新型启发式方法对于解决工业大小的问题至关重要。
translated by 谷歌翻译
我们概述了在其知识表示和声明问题解决的应用中的视角下的时间逻辑编程。这些程序是将通常规则与时间模态运算符组合的结果,如线性时间时间逻辑(LTL)。我们专注于最近的非单调形式主义的结果​​称为时间平衡逻辑(电话),该逻辑(电话)为LTL的全语法定义,但是基于平衡逻辑执行模型选择标准,答案集编程的众所周知的逻辑表征(ASP )。我们获得了稳定模型语义的适当延伸,以进行任意时间公式的一般情况。我们记得电话和单调基础的基本定义,这里的时间逻辑 - 和那里(THT),并研究无限和有限迹线之间的差异。我们还提供其他有用的结果,例如将转换成其他形式主义,如量化的平衡逻辑或二阶LTL,以及用于基于自动机计算的时间稳定模型的一些技术。在第二部分中,我们专注于实际方面,定义称为较近ASP的时间逻辑程序的句法片段,并解释如何在求解器Telingo的构建中被利用。
translated by 谷歌翻译
Deep neural networks have emerged as a widely used and effective means for tackling complex, real-world problems. However, a major obstacle in applying them to safety-critical systems is the great difficulty in providing formal guarantees about their behavior. We present a novel, scalable, and efficient technique for verifying properties of deep neural networks (or providing counter-examples). The technique is based on the simplex method, extended to handle the non-convex Rectified Linear Unit (ReLU ) activation function, which is a crucial ingredient in many modern neural networks. The verification procedure tackles neural networks as a whole, without making any simplifying assumptions. We evaluated our technique on a prototype deep neural network implementation of the next-generation airborne collision avoidance system for unmanned aircraft (ACAS Xu). Results show that our technique can successfully prove properties of networks that are an order of magnitude larger than the largest networks verified using existing methods.
translated by 谷歌翻译
大多数-AT是确定联合正常形式(CNF)中输入$ N $的最低价公式的问题至少为2 ^ {n-1} $令人满意的作业。在对概率规划和推论复杂性的各种AI社区中,广泛研究了多数饱和问题。虽然大多数饱满为期40多年来,但自然变体的复杂性保持开放:大多数 - $ k $ SAT,其中输入CNF公式仅限于最多$ k $的子句宽度。我们证明,每辆$ k $,大多数 - $ k $ sat是在p的。事实上,对于任何正整数$ k $和ratic $ \ rho \ in(0,1)$ in(0,1)$与有界分比者,我们给出了算法这可以确定给定的$ k $ -cnf是否至少有$ \ rho \ cdot 2 ^ n $令人满意的分配,在确定性线性时间(而先前的最着名的算法在指数时间中运行)。我们的算法对计算复杂性和推理的复杂性具有有趣的积极影响,显着降低了相关问题的已知复杂性,例如E-Maj-$ K $ Sat和Maj-Maj- $ K $ Sat。在我们的方法中,通过提取在$ k $ -cnf的相应设置系统中发现的向日葵,可以通过提取向日葵来解决阈值计数问题的有效方法。我们还表明,大多数 - $ k $ sat的易腐烂性有些脆弱。对于密切相关的gtmajority-sat问题(我们询问给定公式是否超过2 ^ {n-1} $满足分配),这已知是pp-cleanting的,我们表明gtmajority-$ k $ sat在p for $ k \ le 3 $,但为$ k \ geq 4 $完成np-cleante。这些结果是违反直觉的,因为这些问题的“自然”分类将是PP完整性,因为GTMAJority的复杂性存在显着差异 - $ k $ SAT和MOSTION- $ K $ SAT为所有$ k \ ge 4 $。
translated by 谷歌翻译
我们根据描述逻辑ALC和ALCI介绍并研究了本体论介导的查询的几个近似概念。我们的近似值有两种:我们可以(1)用一种以易访问的本体语言为例,例如ELI或某些TGD,以及(2)用可拖动类的一个替换数据库,例如其treewidth的数据库,由常数界定。我们确定所得近似值的计算复杂性和相对完整性。(几乎)所有这些都将数据复杂性从Conp-Complete降低到Ptime,在某些情况下甚至是固定参数可拖动和线性时间。虽然种类(1)的近似也降低了综合复杂性,但这种近似(2)往往并非如此。在某些情况下,联合复杂性甚至会增加。
translated by 谷歌翻译
我们介绍了对形状约束语言(Shacl)的介绍和审查,用于验证RDF数据的W3C推荐语言。SHACL文档描述了RDF节点上的一组约束,如果其节点满足这些约束,则图表对于文档是有效的。我们重新审视语言的基本概念,其构建和组件及其互动。我们审查了用于研究这种语言和不同语义的不同正式框架。我们检查许多相关问题,从遏制和满足性与Shacl与推理规则的相互作用,并展示语言的不同发动机对不同的问题有用。我们还涵盖了Shacl的实际方面,讨论其实现和通过的情况,为从业者和理论者提供了一个很有用的全面审查。
translated by 谷歌翻译
人工智能代理必须从周围环境中学到学习,并了解所学习的知识,以便做出决定。虽然从数据的最先进的学习通常使用子符号分布式表示,但是使用用于知识表示的一阶逻辑语言,推理通常在更高的抽象级别中有用。结果,将符号AI和神经计算结合成神经符号系统的尝试已经增加。在本文中,我们呈现了逻辑张量网络(LTN),一种神经组织形式和计算模型,通过引入许多值的端到端可分别的一阶逻辑来支持学习和推理,称为真实逻辑作为表示语言深入学习。我们表明LTN为规范提供了统一的语言,以及多个AI任务的计算,如数据聚类,多标签分类,关系学习,查询应答,半监督学习,回归和嵌入学习。我们使用TensorFlow2的许多简单的解释例实施和说明上述每个任务。关键词:神经组音恐怖症,深度学习和推理,许多值逻辑。
translated by 谷歌翻译
Two approaches to AI, neural networks and symbolic systems, have been proven very successful for an array of AI problems. However, neither has been able to achieve the general reasoning ability required for human-like intelligence. It has been argued that this is due to inherent weaknesses in each approach. Luckily, these weaknesses appear to be complementary, with symbolic systems being adept at the kinds of things neural networks have trouble with and vice-versa. The field of neural-symbolic AI attempts to exploit this asymmetry by combining neural networks and symbolic AI into integrated systems. Often this has been done by encoding symbolic knowledge into neural networks. Unfortunately, although many different methods for this have been proposed, there is no common definition of an encoding to compare them. We seek to rectify this problem by introducing a semantic framework for neural-symbolic AI, which is then shown to be general enough to account for a large family of neural-symbolic systems. We provide a number of examples and proofs of the application of the framework to the neural encoding of various forms of knowledge representation and neural network. These, at first sight disparate approaches, are all shown to fall within the framework's formal definition of what we call semantic encoding for neural-symbolic AI.
translated by 谷歌翻译
我们提出了答案设置的程序,该程序指定和计算在分类模型上输入的实体的反事实干预。关于模型的结果,生成的反事实作为定义和计算分类所在实体的特征值的基于因果的解释分数的基础,即“责任分数”。方法和程序可以应用于黑盒式模型,也可以使用可以指定为逻辑程序的模型,例如基于规则的分类器。这项工作的主要重点是“最佳”反事实体的规范和计算,即导致最大责任分数的人。从它们中可以从原始实体中读取解释作为最大责任特征值。我们还扩展程序以引入图片语义或域知识。我们展示如何通过概率方法扩展方法,以及如何通过使用约束来修改潜在的概率分布。示出了在DLV ASP-Solver的语法中写入的若干程序,并与其运行。
translated by 谷歌翻译
模态逻辑的语言能够在Kripke帧上表达一阶条件。 Henrik Sahlqvist的经典结果确定了一类重要的模态公式,可以以有效的算法方式找到一阶条件(或Sahlqvist通讯)的一阶条件(或Sahlqvist通讯)。最近的作品已成功将这种经典结果扩展到更复杂的模态语言。在本文中,我们追求类似的行并为线性时间逻辑(LTL)开发SAHLQVIST式通讯定理,该定理是用于时间规范的最广泛使用的正式语言之一。 LTL使用专用的临时操作员下一个X和直到U扩展了基本模态逻辑的语法。结果,具有一阶通讯器的公式类别的复杂性也相应增加。在本文中,我们确定了使用模态运算符F,G,X和U构建的一类重要的LTL SAHLQVIST公式。本文的主要结果是证明LTL SAHLQVIST公式对框架条件的对应关系,这些条件在一阶语言中可定义。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
已经开发了概率模型检查,用于验证具有随机和非季度行为的验证系统。鉴于概率系统,概率模型检查器占用属性并检查该系统中的属性是否保持。因此,概率模型检查提供严谨的保证。然而,到目前为止,概率模型检查专注于所谓的模型,其中一个状态由符号表示。另一方面,通常需要在规划和强化学习中进行关系抽象。各种框架处理关系域,例如条带规划和关系马尔可夫决策过程。使用命题模型检查关系设置需要一个地接地模型,这导致了众所周知的状态爆炸问题和难以承承性。我们提出了PCTL-Rebel,一种用于验证关系MDP的PCTL属性的提升模型检查方法。它延长了基于关系模型的强化学习技术的反叛者,朝着关系PCTL模型检查。 PCTL-REBEL被提升,这意味着而不是接地,模型利用对称在关系层面上整体的一组对象。从理论上讲,我们表明PCTL模型检查对于具有可能无限域的关系MDP可判定,条件是该状态具有有界大小。实际上,我们提供算法和提升关系模型检查的实现,并且我们表明提升方法提高了模型检查方法的可扩展性。
translated by 谷歌翻译
归纳逻辑编程(ILP)是一种机器学习的形式。ILP的目标是诱导推广培训示例的假设(一组逻辑规则)。随着ILP转30,我们提供了对该领域的新介绍。我们介绍了必要的逻辑符号和主要学习环境;描述ILP系统的构建块;比较几个维度的几个系统;描述四个系统(Aleph,Tilde,Aspal和Metagol);突出关键应用领域;最后,总结了未来研究的当前限制和方向。
translated by 谷歌翻译
本文迈出了从实验中学习的逻辑的第一步。为此,我们调查了建模因果和(定性)认知推理的相互作用的正式框架。对于我们的方法至关重要是一种干预概念的想法,可以用作(真实或假设的)实验的正式表达。在第一步中,我们将众所周知的因果模型与代理人的认知状态的简单HITIKKA样式表示。在生成的设置中,不仅可以对关于变量值的知识以及干预措施如何影响它们,而且可以对其进行交谈,而且还可以谈论知识更新。由此产生的逻辑可以模拟关于思想实验的推理。但是,它无法解释从实验中学习,这显然是由它验证干预措施没有学习原则的事实。因此,在第二步中,我们实现更复杂的知识概念,该知识概念允许代理在进行实验时观察(测量)某些变量。该扩展系统确实允许从实验中学习。对于所有提出的逻辑系统,我们提供了一种声音和完整的公理化。
translated by 谷歌翻译
作为对定量设定理论推理的贡献,提出了形式的文字的连词的翻译$ x = y \ setminus z $,$ x \ neq y \ setminus z $,而$ z = \ {x} $ ,其中$ x,y,z $代表在von Neumann Universe的von neumann Universe of sets,进入了一个相当简单的联合正常形式的无关的布尔公式。目标语言中的公式涉及在集合的布尔环上方的变量以及指定平等,非脱节和包含的差分运算符和重构。而且,每个转换的结果是字符的形式$ x = y \ setminus z $,$ x \ neq y \ setminus z $和孤立文字的暗示,其后果是夹杂物(严格或变量之间的非严格)或变量之间的相位性。除了反映简单自然的语义之外,该语义确保了保持性保存,所提出的翻译具有二次算法的时间复杂性,并且桥梁两种语言都已知具有NP完全可靠性问题。
translated by 谷歌翻译