症状检查已成为收集症状和诊断患者的重要工具,最大限度地减少临床人员的参与。我们开发了一种机器学习支持的系统,智能曲线,超越传统症状,通过与电子医疗记录(EMR)紧密的双向集成。在EMR衍生的患者历史上,我们的系统将患者的首席投诉识别自由文本条目,然后询问一系列离散问题以获得相关的症状学。患者特定数据用于预测详细的ICD-10-CM代码以及药物,实验室和成像订单。然后将患者的反应和临床决策支持(CDS)预测插入EMR。要培训机器学习组件的智能路程,我们使用了超过2500万级初级保健遭遇的新型数据集和100万患者的自由文本原因的参赛作品。这些数据集用于构建:(1)基于长的短期存储器(LSTM)的患者历史表示,(2)用于首发投诉提取的微调变压器模型,(3)一个用于问题测序的随机林模型, (4)用于CDS预测的前馈网络。我们的系统总共支持337名患者的首席投诉,该投诉共同组成了Kaiser Permanente的所有初级保健费用。
translated by 谷歌翻译
电子健康记录(EHRS)在患者级别汇总了多种信息,并保留了整个时间内患者健康状况进化的轨迹代表。尽管此信息提供了背景,并且可以由医生利用以监控患者的健康并进行更准确的预后/诊断,但患者记录可以包含长期跨度的信息,这些信息与快速生成的医疗数据速率相结合,使临床决策变得更加复杂。患者轨迹建模可以通过以可扩展的方式探索现有信息来帮助,并可以通过促进预防医学实践来增强医疗保健质量。我们为建模患者轨迹提出了一种解决方案,该解决方案结合了不同类型的信息并考虑了临床数据的时间方面。该解决方案利用了两种不同的架构:一组支持灵活的输入功能集,以将患者的录取转换为密集的表示;以及在基于复发的架构中进行的第二次探索提取的入院表示,其中使用滑动窗口机制在子序列中处理患者轨迹。使用公开可用的模仿III临床数据库评估了开发的解决方案,以两种不同的临床结果,意外的患者再入院和疾病进展。获得的结果证明了第一个体系结构使用单个患者入院进行建模和诊断预测的潜力。虽然临床文本中的信息并未显示在其他现有作品中观察到的判别能力,但这可以通过微调临床模型来解释。最后,我们使用滑动窗口机制来表示基于序列的体系结构的潜力,以表示输入数据,从而获得与其他现有解决方案的可比性能。
translated by 谷歌翻译
通过为患者启用远程医疗服务,远程医疗有助于促进医疗专业人员的机会。随着必要的技术基础设施的出现,这些服务已逐渐流行。自从Covid-19危机开始以来,远程医疗的好处就变得更加明显,因为人们在大流行期间倾向于亲自探望医生。在本文中,我们专注于促进医生和患者之间的聊天课程。我们注意到,随着对远程医疗服务的需求的增加,聊天体验的质量和效率可能至关重要。因此,我们为医学对话开发了一种智能的自动反应生成机制,该机制可帮助医生有效地对咨询请求做出反应,尤其是在繁忙的课程中。我们探索了9个月内收集的医生和患者之间的900,000多个匿名的历史在线信息。我们实施聚类算法,以确定医生最常见的响应,并相应地手动标记数据。然后,我们使用此预处理数据来训练机器学习算法以生成响应。所考虑的算法有两个步骤:过滤(即触发)模型,以滤除不可行的患者消息和一个响应发生器,以建议成功通过触发阶段的响应前3位医生响应。该方法为Precision@3提供了83.28 \%的精度,并显示出其参数的鲁棒性。
translated by 谷歌翻译
本研究审查了使用自然语言处理(NLP)模型来评估物品编写者在医疗许可考试中使用的语言模式是否可能包含偏见或陈规定型语言的证据。项目语言选择中的这种类型的偏差对于医疗许可评估中的物品可能对物品特别有影响,因为它可能对内容有效性构成威胁和测试分数有效性证据的可靠性。据我们所知,这是使用机器学习(ML)和NLP的第一次尝试探索大型物品银行的语言偏见。使用培训的预测算法在类似物品茎的集群上,我们证明我们的方法可用于审查大型物品银行,用于临床科学患者中的潜在偏见语言或陈规定型患者特征。该发现可以指导开发用于解决测试项目中发现的陈规定型语言模式的方法,并在需要时能够有效地更新这些项目,以反映当代规范,从而提高了支持测试评分的有效性的证据。
translated by 谷歌翻译
30天的医院再入院是一个长期存在的医疗问题,会影响患者的发病率和死亡率,每年造成数十亿美元的损失。最近,已经创建了机器学习模型来预测特定疾病患者的住院再入院风险,但是不存在任何模型来预测所有患者的风险。我们开发了一个双向长期记忆(LSTM)网络,该网络能够使用随时可用的保险数据(住院访问,门诊就诊和药物处方)来预测任何入院患者的30天重新入选,无论其原因如何。使用历史,住院和入院后数据时,表现最佳模型的ROC AUC为0.763(0.011)。 LSTM模型显着优于基线随机森林分类器,表明了解事件的顺序对于模型预测很重要。与仅住院数据相比,与住院数据相比,将30天的历史数据纳入也显着改善了模型性能,这表明患者入院前的临床病史,包括门诊就诊和药房数据是重新入院的重要贡献者。我们的结果表明,机器学习模型能够使用结构化保险计费数据以合理的准确性来预测住院再入院的风险。由于可以从网站中提取计费数据或同等代理人,因此可以部署此类模型以识别有入院风险的患者,或者分配更多可靠的随访(更近的后续后续,家庭健康,邮寄药物) - 出院后风险患者。
translated by 谷歌翻译
Electronic Health Records (EHRs) hold detailed longitudinal information about each patient's health status and general clinical history, a large portion of which is stored within the unstructured text. Temporal modelling of this medical history, which considers the sequence of events, can be used to forecast and simulate future events, estimate risk, suggest alternative diagnoses or forecast complications. While most prediction approaches use mainly structured data or a subset of single-domain forecasts and outcomes, we processed the entire free-text portion of EHRs for longitudinal modelling. We present Foresight, a novel GPT3-based pipeline that uses NER+L tools (i.e. MedCAT) to convert document text into structured, coded concepts, followed by providing probabilistic forecasts for future medical events such as disorders, medications, symptoms and interventions. Since large portions of EHR data are in text form, such an approach benefits from a granular and detailed view of a patient while introducing modest additional noise. On tests in two large UK hospitals (King's College Hospital, South London and Maudsley) and the US MIMIC-III dataset precision@10 of 0.80, 0.81 and 0.91 was achieved for forecasting the next biomedical concept. Foresight was also validated on 34 synthetic patient timelines by 5 clinicians and achieved relevancy of 97% for the top forecasted candidate disorder. Foresight can be easily trained and deployed locally as it only requires free-text data (as a minimum). As a generative model, it can simulate follow-on disorders, medications and interventions for as many steps as required. Foresight is a general-purpose model for biomedical concept modelling that can be used for real-world risk estimation, virtual trials and clinical research to study the progression of diseases, simulate interventions and counterfactuals, and for educational purposes.
translated by 谷歌翻译
医疗领域通常会受到信息超负荷的约束。医疗保健的数字化,在线医疗存储库的不断更新以及生物医学数据集的可用性增加使得有效分析数据变得具有挑战性。这为严重依赖医疗数据的医疗专业人员创造了其他工作,以完成研究并咨询患者。本文旨在展示不同的文本突出显示技术如何捕获相关的医疗环境。这将通过促进更快的决定,从而改善在线医疗服务的整体质量,从而减少医生对患者的认知负担和反应时间。实施和评估了三个不同的单词级文本突出显示方法。第一个方法使用TF-IDF分数直接突出文本的重要部分。第二种方法是TF-IDF分数的组合以及将局部可解释的模型 - 静态解释应用于分类模型。第三种方法直接使用神经网络来预测是否应突出显示单词。我们的实验结果表明,神经网络方法成功地突出了医学上的术语,并且随着输入段的大小的增加,其性能得到了提高。
translated by 谷歌翻译
临床文本注释(CTN)包含医生的推理过程,以非结构化的自由文本格式编写,他们检查和采访患者。近年来,已经发表了几项研究,这些研究为机器学习的实用性提供了证据,以预测CTN的医生诊断,这是一项称为ICD编码的任务。数据注释很耗时,尤其是在需要一定程度的专业化时,就像医疗数据一样。本文提出了一种以半自我监督的方式增强冰岛CTN的稀疏注释数据集的方法。我们在一小部分带注释的CTN上训练神经网络,并使用它从一组未通畅的CTN中提取临床特征。这些临床特征包括对医生可能会在患者咨询期间找到答案的大约一千个潜在问题的答案。然后,这些功能用于训练分类器以诊断某些类型的疾病。我们报告了对医生的三个数据可用性评估该数据增强方法的评估结果。我们的数据增强方法显示出显着的积极作用,当检查患者和诊断的临床特征时,这会减少。我们建议使用基于不包括考试或测试的临床特征做出决策的系统增强稀缺数据集的方法。
translated by 谷歌翻译
本文研究了医学领域的概念与患者表示的问题。我们将电子健康记录(EHRS)的患者历史作为ICD概念的时间序列,其中嵌入在一个无监督的设置中学习了一种基于变压器的神经网络模型。在6年内对百万患者历史的收集进行了模型培训。与几种基线方法相比,评估这种模型的预测力。与类似系统相比,对模拟-III数据的一系列实验显示了所呈现模型的优势。此外,我们分析了对概念关系的获得空间,并展示了医学领域的知识如何成功转移到患者嵌入形式的保险评分的实际任务。
translated by 谷歌翻译
与痴呆症相关的认知障碍(CI)在全球范围内影响超过5500万人,并且每3秒钟以一个新病例的速度迅速增长。随着临床试验反复出现的失败,早期诊断至关重要,但是在低水平和中等收入国家中,全球75%的痴呆症病例未被诊断为90%。众所周知,当前的诊断方法是复杂的,涉及对医学笔记,大量认知测试,昂贵的脑部扫描或脊柱液体测试的手动审查。与CI相关的信息经常在电子健康记录(EHR)中找到,并且可以为早期诊断提供重要线索,但是专家的手动审查是繁琐的,并且容易发生。该项目开发了一种新型的最新自动筛选管道,用于可扩展和高速发现EHR中的CI。为了了解EHR中复杂语言结构的语言环境,构建了一个8,656个序列的数据库,以训练基于注意力的深度学习自然语言处理模型以对序列进行分类。使用序列级别分类器开发了基于逻辑回归的患者级别预测模型。深度学习系统的精度达到了93%,AUC = 0.98,以识别其EHR中没有较早诊断,与痴呆有关的诊断代码或与痴呆有关的药物的患者。否则,这些患者将未被发现或检测到太晚。 EHR筛选管道已部署在Neurahealthnlp中,这是一种用于自动化和实时CI筛选的Web应用程序,只需将EHR上传到浏览器中即可。 Neurahealthnlp更便宜,更快,更容易获得,并且胜过当前的临床方法,包括基于文本的分析和机器学习方法。它使得早期诊断可在稀缺的医疗服务中可行,但可访问的互联网或蜂窝服务。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
传统机器学习方法面临两种主要挑战,在处理医疗保健预测分析任务方面。首先,医疗保健数据的高维性质需要劳动密集型和耗时的过程,为每项新任务选择适当的功能集。其次,这些方法依赖于特征工程来捕获患者数据的顺序性,这可能无法充分利用医疗事件的时间模式及其依赖性。最近的深度学习方法通​​过解决医疗数据的高维和时间挑战,对各种医疗保健预测任务显示了有希望的性能。这些方法可以学习关键因素(例如,医学概念或患者)的有用表示及其与高维原始或最低处理的医疗保健数据的相互作用。在本文中,我们系统地审查了专注于推进和使用深神经网络的研究,以利用患者结构化时间序列数据进行医疗保健预测任务。为了识别相关研究,搜索MEDLINE,IEEE,SCOPUS和ACM数字图书馆于2021年2月7日出版的研究。我们发现研究人员在十个研究流中为深度时间序列预测文献做出了贡献:深入学习模型,缺少价值处理,不规则处理,患者表示,静态数据包容,关注机制,解释,纳入医疗本体,学习策略和可扩展性。本研究总结了这些文献流的研究见解,确定了几个关键研究差距,并提出了未来的患者时间序列数据深入学习的研究机会。
translated by 谷歌翻译
我们介绍MedCod,一种医学准确,情感,多样化和可控的对话系统,具有独特的自然语言发生器模块的方法。 MedCod已经开发并专门为历史为任务进行了评估。它集成了传统模块化方法的优势,使(医学)域知识与现代深层学习技术结合起来,以产生灵活的人类自然语言表达。详细描述了Medcod的自然语言输出的两个关键方面。首先,生成的句子是情绪化的,同样地看着医生如何与患者沟通。其次,生成的句子结构和措辞是多样化的,同时保持与所需医学概念的医疗一致性(由Medcod的对话管理器模块提供)。实验结果表明了我们在创造人类医疗对话系统方面的有效性。相关代码在https://github.com/curai/curai-research/tree/main/medcod提供
translated by 谷歌翻译
Objective: Social Determinants of Health (SDOH) influence personal health outcomes and health systems interactions. Health systems capture SDOH information through structured data and unstructured clinical notes; however, clinical notes often contain a more comprehensive representation of several key SDOH. The objective of this work is to assess the SDOH information gain achievable by extracting structured semantic representations of SDOH from the clinical narrative and combining these extracted representations with available structured data. Materials and Methods: We developed a natural language processing (NLP) information extraction model for SDOH that utilizes a deep learning entity and relation extraction architecture. In an electronic health record (EHR) case study, we applied the SDOH extractor to a large existing clinical data set with over 200,000 patients and 400,000 notes and compared the extracted information with available structured data. Results: The SDOH extractor achieved 0.86 F1 on a withheld test set. In the EHR case study, we found 19\% of current tobacco users, 10\% of drug users, and 32\% of homeless patients only include documentation of these risk factors in the clinical narrative. Conclusions: Patients who are at-risk for negative health outcomes due to SDOH may be better served if health systems are able to identify SDOH risk factors and associated social needs. Structured semantic representations of text-encoded SDOH information can augment existing structured, and this more comprehensive SDOH representation can assist health systems in identifying and addressing social needs.
translated by 谷歌翻译
背景:电子健康记录(EHRS)包含丰富的患者健康历史信息,这通常包括结构化和非结构化数据。已经有许多研究专注于从结构化数据中蒸馏有价值的信息,例如疾病代码,实验室测试结果和治疗方法。但是,依托结构化数据可能不足反映患者的综合信息,此类数据可能偶尔含有错误的记录。目的:随着机器学习(ML)和深度学习(DL)技术的最近进步,越来越多的研究通过纳入非结构化的自由文本数据,寻求获得更准确的结果。本文评论了使用多模式数据的研究,即结构化和非结构化数据的组合,从EHRS作为传统ML或DL模型的输入来解决目标任务。材料和方法:我们在电气和电子工程师(IEEE)数字图书馆(IEEE)数字图书馆,PubMed和Compution Machion(ACM)数字文章中搜索了与基于ML的多模式EHR研究相关的制品。结果与讨论:最后94项包括研究,我们专注于如何使用常规ML和DL技术合并和互动的数据来自不同方式的数据,以及如何在与EHR相关的任务中应用这些算法。此外,我们研究了这些融合方法的优点和局限,并表明了基于ML的多模式EHR研究的未来方向。
translated by 谷歌翻译
本文介绍了一种使用旨在解决现实世界应用中CDSS的低适用性和可扩展性问题的数据驱动的预测模型来构建一致和适用的临床决策支持系统(CDSS)的方法。该方法基于域特定和数据驱动的支持程序的三种特定于域和数据驱动的支持程序,该程序将被纳入临床业务流程,具有更高的信任和预测结果和建议的解释性。在考虑的三个阶段,监管策略,数据驱动模式和解释程序被集成,以实现与决策者的自然域特定的互动,具有智能决策支持焦点的连续缩小。该提出的方法能够实现更高水平的自动化,可扩展性和CDSS的语义解释性。该方法是在软件解决方案中实现的,并在T2DM预测中进行了测试,使我们能够改善已知的临床尺度(例如FindRisk),同时保持与现有应用程序类似的特定问题的推理界面。这种继承与三分阶段的方法一起提供了更高的解决方案兼容性,并导致数据驱动的解决方案在现实案件中的信任,有效和解释应用。
translated by 谷歌翻译
近年来,人们对使用电子病历(EMR)进行次要目的特别感兴趣,以增强医疗保健提供的质量和安全性。 EMR倾向于包含大量有价值的临床笔记。学习嵌入是一种将笔记转换为使其可比性的格式的方法。基于变压器的表示模型最近取得了巨大的飞跃。这些模型在大型在线数据集上进行了预训练,以有效地了解自然语言文本。学习嵌入的质量受临床注释如何用作表示模型的输入的影响。临床注释有几个部分具有不同水平的信息价值。医疗保健提供者通常使用不同的表达方式来实现同一概念也很常见。现有方法直接使用临床注释或初始预处理作为表示模型的输入。但是,要学习良好的嵌入,我们确定了最重要的临床笔记部分。然后,我们将提取的概念从选定部分映射到统一医学语言系统(UMLS)中的标准名称。我们使用与唯一概念相对应的标准短语作为临床模型的输入。我们进行了实验,以测量在公共可用的医疗信息集市(MIMIC-III)数据集的子集中,在医院死亡率预测的任务中,学到的嵌入向量的实用性。根据实验,与其他输入格式相比,基于临床变压器的表示模型通过提取的独特概念的标准名称产生的输入产生了更好的结果。表现最好的模型分别是Biobert,PubMedbert和Umlsbert。
translated by 谷歌翻译
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.
translated by 谷歌翻译
目的:我们研究使用机器学习(ML)模型的可解释的累入预测,并在预测能力,稀疏性和公平性方面分析性能。与以前的作品不同,本研究列举了输出概率而不是二进制预测的可解释模型,并使用定量公平定义来评估模型。本研究还研究了模型是否可以横跨地理位置概括。方法:我们在佛罗里达州和肯塔基州的两个不同的刑事核查数据集上生成了黑盒和可解释的ML模型。我们将这些模型的预测性能和公平与目前用于司法系统中使用的两种方法进行了比较,以预测审前常规率:Arnold PSA和Compas。我们评估了所有模型的预测性能,可以在两次跨越两次预测六种不同类型犯罪的模型。结果:几种可解释的ML模型可以预测常规和黑盒ML模型,比Compas或Arnold PSA更准确。这些模型在实践中可能有用。类似于Arnold PSA,这些可解释模型中的一些可以作为一个简单的表格写入。其他可以使用一组可视化显示。我们的地理分析表明ML模型应分开培训,以便单独的位置并随时间更新。我们还为可​​解释模型提供了公平分析。结论:可解释的机器学习模型可以在预测准确性和公平性方面表现,也可以表现,也可以表现,也可以执行不可解释的方法和目前使用的风险评估尺度。机器学习模型对于单独培训,可以更准确地进行不同的位置,并保持最新。
translated by 谷歌翻译
随着AI系统表现出越来越强烈的预测性能,它们的采用已经在许多域中种植。然而,在刑事司法和医疗保健等高赌场域中,由于安全,道德和法律问题,往往是完全自动化的,但是完全手工方法可能是不准确和耗时的。因此,对研究界的兴趣日益增长,以增加人力决策。除了为此目的开发AI技术之外,人民AI决策的新兴领域必须采用实证方法,以形成对人类如何互动和与AI合作做出决定的基础知识。为了邀请和帮助结构研究努力了解理解和改善人为 - AI决策的研究,我们近期对本课题的实证人体研究的文献。我们总结了在三个重要方面的100多篇论文中的研究设计选择:(1)决定任务,(2)AI模型和AI援助要素,以及(3)评估指标。对于每个方面,我们总结了当前的趋势,讨论了现场当前做法中的差距,并列出了未来研究的建议。我们的调查强调了开发共同框架的需要考虑人类 - AI决策的设计和研究空间,因此研究人员可以在研究设计中进行严格的选择,研究界可以互相构建并产生更广泛的科学知识。我们还希望这项调查将成为HCI和AI社区的桥梁,共同努力,相互塑造人类决策的经验科学和计算技术。
translated by 谷歌翻译