Electronic Health Records (EHRs) hold detailed longitudinal information about each patient's health status and general clinical history, a large portion of which is stored within the unstructured text. Temporal modelling of this medical history, which considers the sequence of events, can be used to forecast and simulate future events, estimate risk, suggest alternative diagnoses or forecast complications. While most prediction approaches use mainly structured data or a subset of single-domain forecasts and outcomes, we processed the entire free-text portion of EHRs for longitudinal modelling. We present Foresight, a novel GPT3-based pipeline that uses NER+L tools (i.e. MedCAT) to convert document text into structured, coded concepts, followed by providing probabilistic forecasts for future medical events such as disorders, medications, symptoms and interventions. Since large portions of EHR data are in text form, such an approach benefits from a granular and detailed view of a patient while introducing modest additional noise. On tests in two large UK hospitals (King's College Hospital, South London and Maudsley) and the US MIMIC-III dataset precision@10 of 0.80, 0.81 and 0.91 was achieved for forecasting the next biomedical concept. Foresight was also validated on 34 synthetic patient timelines by 5 clinicians and achieved relevancy of 97% for the top forecasted candidate disorder. Foresight can be easily trained and deployed locally as it only requires free-text data (as a minimum). As a generative model, it can simulate follow-on disorders, medications and interventions for as many steps as required. Foresight is a general-purpose model for biomedical concept modelling that can be used for real-world risk estimation, virtual trials and clinical research to study the progression of diseases, simulate interventions and counterfactuals, and for educational purposes.
translated by 谷歌翻译
临床编码是将患者健康记录中的医疗信息转换为结构化代码的任务,以便它们可用于统计分析。这是一项认知且耗时的任务,遵循标准过程,以达到高水平的一致性。自动化系统可以支持临床编码,以提高该过程的效率和准确性。我们介绍了自动临床编码的想法,并从人工智能(AI)和自然语言处理(NLP)(NLP)的角度总结了挑战,该文献是根据文献,我们在过去两年半(2019年末 - 2022年初)的项目经验),以及与苏格兰和英国的临床编码专家的讨论。我们的研究揭示了应用于临床编码的当前基于深度学习的方法与现实世界实践中的解释性和一致性之间的差距。基于知识的方法代表和推理了标准,可以解释的任务过程,可能需要将其纳入基于深度学习的临床编码方法中。尽管面临技术和组织的挑战,但自动化的临床编码是AI的一项有前途的任务。编码人员需要参与开发过程。在未来五年及以后,开发和部署基于AI的自动化系统需要实现很多目标。
translated by 谷歌翻译
计算文本表型是从临床注释中鉴定出患有某些疾病和特征的患者的实践。由于很少有用于机器学习的案例和域专家的数据注释需求,因此难以识别的罕见疾病要确定。我们提出了一种使用本体论和弱监督的方法,并具有来自双向变压器(例如BERT)的最新预训练的上下文表示。基于本体的框架包括两个步骤:(i)文本到umls,通过上下文将提及与统一医学语言系统(UMLS)中的概念链接到命名的实体识别和链接(NER+L)工具,SemeHR中提取表型。 ,以及具有自定义规则和上下文提及表示的弱监督; (ii)UMLS-to-to-ordo,将UMLS概念与孤子罕见疾病本体论(ORDO)中的罕见疾病相匹配。提出了弱监督的方法来学习一个表型确认模型,以改善链接的文本对umls,而没有域专家的注释数据。我们评估了来自美国和英国两个机构的三个出院摘要和放射学报告的临床数据集的方法。我们最好的弱监督方法获得了81.4%的精度和91.4%的召回,从模仿III出院摘要中提取罕见疾病UMLS表型。总体管道处理临床笔记可以表面罕见疾病病例,其中大部分在结构化数据(手动分配的ICD代码)中没有受到平衡。关于模仿III和NHS Tayside的放射学报告的结果与放电摘要一致。我们讨论了弱监督方法的有用性,并提出了未来研究的方向。
translated by 谷歌翻译
自然语言处理(NLP)是一个人工智能领域,它应用信息技术来处理人类语言,在一定程度上理解并在各种应用中使用它。在过去的几年中,该领域已经迅速发展,现在采用了深层神经网络的现代变体来从大型文本语料库中提取相关模式。这项工作的主要目的是调查NLP在药理学领域的最新使用。正如我们的工作所表明的那样,NLP是药理学高度相关的信息提取和处理方法。它已被广泛使用,从智能搜索到成千上万的医疗文件到在社交媒体中找到对抗性药物相互作用的痕迹。我们将覆盖范围分为五个类别,以调查现代NLP方法论,常见的任务,相关的文本数据,知识库和有用的编程库。我们将这五个类别分为适当的子类别,描述其主要属性和想法,并以表格形式进行总结。最终的调查介绍了该领域的全面概述,对从业者和感兴趣的观察者有用。
translated by 谷歌翻译
近年来,人们对使用电子病历(EMR)进行次要目的特别感兴趣,以增强医疗保健提供的质量和安全性。 EMR倾向于包含大量有价值的临床笔记。学习嵌入是一种将笔记转换为使其可比性的格式的方法。基于变压器的表示模型最近取得了巨大的飞跃。这些模型在大型在线数据集上进行了预训练,以有效地了解自然语言文本。学习嵌入的质量受临床注释如何用作表示模型的输入的影响。临床注释有几个部分具有不同水平的信息价值。医疗保健提供者通常使用不同的表达方式来实现同一概念也很常见。现有方法直接使用临床注释或初始预处理作为表示模型的输入。但是,要学习良好的嵌入,我们确定了最重要的临床笔记部分。然后,我们将提取的概念从选定部分映射到统一医学语言系统(UMLS)中的标准名称。我们使用与唯一概念相对应的标准短语作为临床模型的输入。我们进行了实验,以测量在公共可用的医疗信息集市(MIMIC-III)数据集的子集中,在医院死亡率预测的任务中,学到的嵌入向量的实用性。根据实验,与其他输入格式相比,基于临床变压器的表示模型通过提取的独特概念的标准名称产生的输入产生了更好的结果。表现最好的模型分别是Biobert,PubMedbert和Umlsbert。
translated by 谷歌翻译
由于结构化数据通常不足,因此在开发用于临床信息检索和决策支持系统模型时,需要从电子健康记录中的自由文本中提取标签。临床文本中最重要的上下文特性之一是否定,这表明没有发现。我们旨在通过比较荷兰临床注释中的三种否定检测方法来改善标签的大规模提取。我们使用Erasmus医疗中心荷兰临床语料库比较了基于ContextD的基于规则的方法,即使用MEDCAT和(Fineted)基于Roberta的模型的BilstM模型。我们发现,Bilstm和Roberta模型都在F1得分,精度和召回方面始终优于基于规则的模型。此外,我们将每个模型的分类错误系统地分类,这些错误可用于进一步改善特定应用程序的模型性能。在性能方面,将三个模型结合起来并不有益。我们得出的结论是,尤其是基于Bilstm和Roberta的模型在检测临床否定方面非常准确,但是最终,根据手头的用例,这三种方法最终都可以可行。
translated by 谷歌翻译
Objective: We aim to develop an open-source natural language processing (NLP) package, SODA (i.e., SOcial DeterminAnts), with pre-trained transformer models to extract social determinants of health (SDoH) for cancer patients, examine the generalizability of SODA to a new disease domain (i.e., opioid use), and evaluate the extraction rate of SDoH using cancer populations. Methods: We identified SDoH categories and attributes and developed an SDoH corpus using clinical notes from a general cancer cohort. We compared four transformer-based NLP models to extract SDoH, examined the generalizability of NLP models to a cohort of patients prescribed with opioids, and explored customization strategies to improve performance. We applied the best NLP model to extract 19 categories of SDoH from the breast (n=7,971), lung (n=11,804), and colorectal cancer (n=6,240) cohorts. Results and Conclusion: We developed a corpus of 629 cancer patients notes with annotations of 13,193 SDoH concepts/attributes from 19 categories of SDoH. The Bidirectional Encoder Representations from Transformers (BERT) model achieved the best strict/lenient F1 scores of 0.9216 and 0.9441 for SDoH concept extraction, 0.9617 and 0.9626 for linking attributes to SDoH concepts. Fine-tuning the NLP models using new annotations from opioid use patients improved the strict/lenient F1 scores from 0.8172/0.8502 to 0.8312/0.8679. The extraction rates among 19 categories of SDoH varied greatly, where 10 SDoH could be extracted from >70% of cancer patients, but 9 SDoH had a low extraction rate (<70% of cancer patients). The SODA package with pre-trained transformer models is publicly available at https://github.com/uf-hobiinformatics-lab/SDoH_SODA.
translated by 谷歌翻译
症状检查已成为收集症状和诊断患者的重要工具,最大限度地减少临床人员的参与。我们开发了一种机器学习支持的系统,智能曲线,超越传统症状,通过与电子医疗记录(EMR)紧密的双向集成。在EMR衍生的患者历史上,我们的系统将患者的首席投诉识别自由文本条目,然后询问一系列离散问题以获得相关的症状学。患者特定数据用于预测详细的ICD-10-CM代码以及药物,实验室和成像订单。然后将患者的反应和临床决策支持(CDS)预测插入EMR。要培训机器学习组件的智能路程,我们使用了超过2500万级初级保健遭遇的新型数据集和100万患者的自由文本原因的参赛作品。这些数据集用于构建:(1)基于长的短期存储器(LSTM)的患者历史表示,(2)用于首发投诉提取的微调变压器模型,(3)一个用于问题测序的随机林模型, (4)用于CDS预测的前馈网络。我们的系统总共支持337名患者的首席投诉,该投诉共同组成了Kaiser Permanente的所有初级保健费用。
translated by 谷歌翻译
电子健康记录(EHRS)在患者级别汇总了多种信息,并保留了整个时间内患者健康状况进化的轨迹代表。尽管此信息提供了背景,并且可以由医生利用以监控患者的健康并进行更准确的预后/诊断,但患者记录可以包含长期跨度的信息,这些信息与快速生成的医疗数据速率相结合,使临床决策变得更加复杂。患者轨迹建模可以通过以可扩展的方式探索现有信息来帮助,并可以通过促进预防医学实践来增强医疗保健质量。我们为建模患者轨迹提出了一种解决方案,该解决方案结合了不同类型的信息并考虑了临床数据的时间方面。该解决方案利用了两种不同的架构:一组支持灵活的输入功能集,以将患者的录取转换为密集的表示;以及在基于复发的架构中进行的第二次探索提取的入院表示,其中使用滑动窗口机制在子序列中处理患者轨迹。使用公开可用的模仿III临床数据库评估了开发的解决方案,以两种不同的临床结果,意外的患者再入院和疾病进展。获得的结果证明了第一个体系结构使用单个患者入院进行建模和诊断预测的潜力。虽然临床文本中的信息并未显示在其他现有作品中观察到的判别能力,但这可以通过微调临床模型来解释。最后,我们使用滑动窗口机制来表示基于序列的体系结构的潜力,以表示输入数据,从而获得与其他现有解决方案的可比性能。
translated by 谷歌翻译
There is an increasing interest in developing artificial intelligence (AI) systems to process and interpret electronic health records (EHRs). Natural language processing (NLP) powered by pretrained language models is the key technology for medical AI systems utilizing clinical narratives. However, there are few clinical language models, the largest of which trained in the clinical domain is comparatively small at 110 million parameters (compared with billions of parameters in the general domain). It is not clear how large clinical language models with billions of parameters can help medical AI systems utilize unstructured EHRs. In this study, we develop from scratch a large clinical language model - GatorTron - using >90 billion words of text (including >82 billion words of de-identified clinical text) and systematically evaluate it on 5 clinical NLP tasks including clinical concept extraction, medical relation extraction, semantic textual similarity, natural language inference (NLI), and medical question answering (MQA). We examine how (1) scaling up the number of parameters and (2) scaling up the size of the training data could benefit these NLP tasks. GatorTron models scale up the clinical language model from 110 million to 8.9 billion parameters and improve 5 clinical NLP tasks (e.g., 9.6% and 9.5% improvement in accuracy for NLI and MQA), which can be applied to medical AI systems to improve healthcare delivery. The GatorTron models are publicly available at: https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara/models/gatortron_og.
translated by 谷歌翻译
根据诸如医疗条件,程序和药物使用之类的资格标准,识别患者队列对于临床试验的招募至关重要。这种标准通常是在自由文本中最自然地描述的,使用临床医生和研究人员熟悉的语言。为了大规模识别潜在参与者,必须首先将这些标准转换为临床数据库的查询,这可能是劳动密集型且容易出错的。自然语言处理(NLP)方法提供了一种可能自动转换为数据库查询的潜在手段。但是,必须首先使用Corpora对其进行培训和评估,该语料库详细列出临床试验标准。在本文中,我们介绍了叶片临床试验(LCT)语料库,该语料库是一种使用高度颗粒状结构化标签,捕获一系列生物医学现象的人类向超过1000个临床试验资格标准描述。我们提供了我们的模式,注释过程,语料库质量和统计数据的详细信息。此外,我们提出了该语料库的基线信息提取结果,作为未来工作的基准。
translated by 谷歌翻译
虽然我们注意临床自然语言处理(NLP)的最新进展,但我们可以注意到临床和翻译研究界的一些抵抗,因为透明度,可解释性和可用性有限,采用NLP模型。在这项研究中,我们提出了一种开放的自然语言处理开发框架。我们通过实施NLP算法为国家Covid队列协作(N3C)进行了评估。基于Covid-19相关临床笔记的信息提取的利益,我们的工作包括1)使用Covid-19标志和症状作为用例的开放数据注释过程,2)一个社区驱动的规则集合平台,3)合成文本数据生成工作流程,用于生成信息提取任务的文本而不涉及人为受试者。 Corpora来自来自三个不同机构的文本(Mayo Clinic,肯塔基州大学,明尼苏达大学)。用单个机构(Mayo)规则集进行了金标准注释。这导致了0.876,0.706和0.694的F-Scors分别用于Mayo,Minnesota和肯塔基测试数据集。作为N3C NLP子群体的联盟努力的研究表明,创建联邦NLP算法开发和基准测试平台的可行性,以增强多机构临床NLP研究和采用。虽然我们在这项工作中使用Covid-19作为用例,但我们的框架足以适用于临床NLP的其他兴趣领域。
translated by 谷歌翻译
循证医学,医疗保健专业人员在做出决定时提到最佳证据的实践,形成现代医疗保健的基础。但是,它依赖于劳动密集型系统评论,其中域名专家必须从数千个出版物中汇总和提取信息,主要是随机对照试验(RCT)结果转化为证据表。本文通过对两个语言处理任务分解的问题来调查自动化证据表生成:\ texit {命名实体识别},它标识文本中的关键实体,例如药物名称,以及\ texit {关系提取},它会映射它们的关系将它们分成有序元组。我们专注于发布的RCT摘要的句子的自动制表,报告研究结果的结果。使用转移学习和基于变压器的语言表示的原则,开发了两个深度神经网络模型作为联合提取管道的一部分。为了培训和测试这些模型,开发了一种新的金标语,包括来自六种疾病区域的近600个结果句。这种方法表现出显着的优势,我们的系统在多种自然语言处理任务和疾病区域中表现良好,以及在训练期间不均匀地展示疾病域。此外,我们显示这些结果可以通过培训我们的模型仅在200个例句中培训。最终系统是一个概念证明,即证明表的产生可以是半自动的,代表全自动系统评论的一步。
translated by 谷歌翻译
我们提出了一种新颖的基准和相关的评估指标,用于评估文本匿名方法的性能。文本匿名化定义为编辑文本文档以防止个人信息披露的任务,目前遭受了面向隐私的带注释的文本资源的短缺,因此难以正确评估各种匿名方法提供的隐私保护水平。本文介绍了标签(文本匿名基准),这是一种新的开源注释语料库,以解决此短缺。该语料库包括欧洲人权法院(ECHR)的1,268个英语法院案件,并充满了有关每个文档中出现的个人信息的全面注释,包括其语义类别,标识符类型,机密属性和共同参考关系。与以前的工作相比,TAB语料库旨在超越传统的识别(仅限于检测预定义的语义类别),并且明确标记了这些文本跨越的标记,这些文本应该被掩盖,以掩盖该人的身份受到保护。除了介绍语料库及其注释层外,我们还提出了一套评估指标,这些指标是针对衡量文本匿名性的性能而定制的,无论是在隐私保护和公用事业保护方面。我们通过评估几个基线文本匿名模型的经验性能来说明基准和提议的指标的使用。完整的语料库及其面向隐私的注释准则,评估脚本和基线模型可在以下网址提供:
translated by 谷歌翻译
与痴呆症相关的认知障碍(CI)在全球范围内影响超过5500万人,并且每3秒钟以一个新病例的速度迅速增长。随着临床试验反复出现的失败,早期诊断至关重要,但是在低水平和中等收入国家中,全球75%的痴呆症病例未被诊断为90%。众所周知,当前的诊断方法是复杂的,涉及对医学笔记,大量认知测试,昂贵的脑部扫描或脊柱液体测试的手动审查。与CI相关的信息经常在电子健康记录(EHR)中找到,并且可以为早期诊断提供重要线索,但是专家的手动审查是繁琐的,并且容易发生。该项目开发了一种新型的最新自动筛选管道,用于可扩展和高速发现EHR中的CI。为了了解EHR中复杂语言结构的语言环境,构建了一个8,656个序列的数据库,以训练基于注意力的深度学习自然语言处理模型以对序列进行分类。使用序列级别分类器开发了基于逻辑回归的患者级别预测模型。深度学习系统的精度达到了93%,AUC = 0.98,以识别其EHR中没有较早诊断,与痴呆有关的诊断代码或与痴呆有关的药物的患者。否则,这些患者将未被发现或检测到太晚。 EHR筛选管道已部署在Neurahealthnlp中,这是一种用于自动化和实时CI筛选的Web应用程序,只需将EHR上传到浏览器中即可。 Neurahealthnlp更便宜,更快,更容易获得,并且胜过当前的临床方法,包括基于文本的分析和机器学习方法。它使得早期诊断可在稀缺的医疗服务中可行,但可访问的互联网或蜂窝服务。
translated by 谷歌翻译
30天的医院再入院是一个长期存在的医疗问题,会影响患者的发病率和死亡率,每年造成数十亿美元的损失。最近,已经创建了机器学习模型来预测特定疾病患者的住院再入院风险,但是不存在任何模型来预测所有患者的风险。我们开发了一个双向长期记忆(LSTM)网络,该网络能够使用随时可用的保险数据(住院访问,门诊就诊和药物处方)来预测任何入院患者的30天重新入选,无论其原因如何。使用历史,住院和入院后数据时,表现最佳模型的ROC AUC为0.763(0.011)。 LSTM模型显着优于基线随机森林分类器,表明了解事件的顺序对于模型预测很重要。与仅住院数据相比,与住院数据相比,将30天的历史数据纳入也显着改善了模型性能,这表明患者入院前的临床病史,包括门诊就诊和药房数据是重新入院的重要贡献者。我们的结果表明,机器学习模型能够使用结构化保险计费数据以合理的准确性来预测住院再入院的风险。由于可以从网站中提取计费数据或同等代理人,因此可以部署此类模型以识别有入院风险的患者,或者分配更多可靠的随访(更近的后续后续,家庭健康,邮寄药物) - 出院后风险患者。
translated by 谷歌翻译
传统机器学习方法面临两种主要挑战,在处理医疗保健预测分析任务方面。首先,医疗保健数据的高维性质需要劳动密集型和耗时的过程,为每项新任务选择适当的功能集。其次,这些方法依赖于特征工程来捕获患者数据的顺序性,这可能无法充分利用医疗事件的时间模式及其依赖性。最近的深度学习方法通​​过解决医疗数据的高维和时间挑战,对各种医疗保健预测任务显示了有希望的性能。这些方法可以学习关键因素(例如,医学概念或患者)的有用表示及其与高维原始或最低处理的医疗保健数据的相互作用。在本文中,我们系统地审查了专注于推进和使用深神经网络的研究,以利用患者结构化时间序列数据进行医疗保健预测任务。为了识别相关研究,搜索MEDLINE,IEEE,SCOPUS和ACM数字图书馆于2021年2月7日出版的研究。我们发现研究人员在十个研究流中为深度时间序列预测文献做出了贡献:深入学习模型,缺少价值处理,不规则处理,患者表示,静态数据包容,关注机制,解释,纳入医疗本体,学习策略和可扩展性。本研究总结了这些文献流的研究见解,确定了几个关键研究差距,并提出了未来的患者时间序列数据深入学习的研究机会。
translated by 谷歌翻译
医疗领域通常会受到信息超负荷的约束。医疗保健的数字化,在线医疗存储库的不断更新以及生物医学数据集的可用性增加使得有效分析数据变得具有挑战性。这为严重依赖医疗数据的医疗专业人员创造了其他工作,以完成研究并咨询患者。本文旨在展示不同的文本突出显示技术如何捕获相关的医疗环境。这将通过促进更快的决定,从而改善在线医疗服务的整体质量,从而减少医生对患者的认知负担和反应时间。实施和评估了三个不同的单词级文本突出显示方法。第一个方法使用TF-IDF分数直接突出文本的重要部分。第二种方法是TF-IDF分数的组合以及将局部可解释的模型 - 静态解释应用于分类模型。第三种方法直接使用神经网络来预测是否应突出显示单词。我们的实验结果表明,神经网络方法成功地突出了医学上的术语,并且随着输入段的大小的增加,其性能得到了提高。
translated by 谷歌翻译
通用数据模型解决了标准化电子健康记录(EHR)数据的许多挑战,但无法将其集成深度表型所需的资源。开放的生物学和生物医学本体论(OBO)铸造本体论提供了可用于生物学知识的语义计算表示,并能够整合多种生物医学数据。但是,将EHR数据映射到OBO Foundry本体论需要大量的手动策展和域专业知识。我们介绍了一个框架,用于将观察性医学成果合作伙伴关系(OMOP)标准词汇介绍给OBO铸造本体。使用此框架,我们制作了92,367条条件,8,615种药物成分和10,673个测量结果的映射。域专家验证了映射准确性,并且在24家医院进行检查时,映射覆盖了99%的条件和药物成分和68%的测量结果。最后,我们证明OMOP2OBO映射可以帮助系统地识别可能受益于基因检测的未诊断罕见病患者。
translated by 谷歌翻译
大量的电子健康记录(EHR)在改善医疗保健方面产生了巨大的潜力。临床代码(结构化数据)和临床叙述(非结构化数据)是EHR中的两个重要文本模式。临床代码传达医院期间的诊断和治疗信息,临床注释带有患者遭遇的临床提供者的叙述。它们不孤立地存在,并且可以在大多数现实生活中的临床情况下相互补充。但是,大多数现有的面向EHR的研究要么集中于特定模式,要么以直接方式整合来自不同模态的数据,这忽略了它们之间的内在相互作用。为了解决这些问题,我们提出了一个名为MEDM-PLM的医学多模式预训练的语言模型,以了解对结构化和非结构化数据的增强EHR表示。在MEDM-PLM中,首先采用了两个基于变压器的神经网络组件来从每种模式中学习代表性特征。然后引入跨模块模块以建模其相互作用。我们在模拟III数据集上预先训练MEDM-PLM,并验证了该模型对三个下游临床任务的有效性,即药物建议,30天的再入院预测和ICD编码。与最先进的方法相比,广泛的实验证明了MEDM-PLM的功率。进一步的分析和可视化表明了我们的模型的鲁棒性,这有可能为临床决策提供更全面的解释。
translated by 谷歌翻译