由于需要将靠近用户的所有处理和解决隐私问题需要,人工智能现在在智能手机行业中占据了智能手机行业的中心阶段。若干AI应用程序使用的卷积神经网络(CNNS)是高度资源和计算密集型。虽然新一代智能手机具有启用AI的芯片,但最小的内存和能量利用率对于许多应用程序在智能手机上同时运行。鉴于此,通过将处理的一部分卸载到云服务器的一部分来优化智能手机上的工作负载是一个重要的研究方向。在本文中,我们通过制定优化端到端延迟,内存利用率和能量消耗的多目标优化问题来分析智能手机和云服务器之间分离CNN的可行性。我们设计SmartSplit,一种基于决策分析的遗传算法来解决优化问题。我们使用多个CNN模型运行的实验显示,在智能手机和云服务器之间拆分CNN是可行的。与其他最先进的方法相比,SmartSplit的方法,SmartSplit更好。
translated by 谷歌翻译
最近,使用卷积神经网络(CNNS)存在移动和嵌入式应用的爆炸性增长。为了减轻其过度的计算需求,开发人员传统上揭示了云卸载,突出了高基础设施成本以及对网络条件的强烈依赖。另一方面,强大的SOC的出现逐渐启用设备执行。尽管如此,低端和中层平台仍然努力充分运行最先进的CNN。在本文中,我们展示了Dyno,一种分布式推断框架,将两全其人的最佳框架结合起来解决了几个挑战,例如设备异质性,不同的带宽和多目标要求。启用这是其新的CNN特定数据包装方法,其在onloading计算时利用CNN的不同部分的精度需求的可变性以及其新颖的调度器,该调度器共同调谐分区点并在运行时传输数据精度适应其执行环境的推理。定量评估表明,Dyno优于当前最先进的,通过竞争对手的CNN卸载系统,在竞争对手的CNN卸载系统上提高吞吐量超过一个数量级,最高可达60倍的数据。
translated by 谷歌翻译
随着人工智能(AI)的积极发展,基于深神经网络(DNN)的智能应用会改变人们的生活方式和生产效率。但是,从网络边缘生成的大量计算和数据成为主要的瓶颈,传统的基于云的计算模式无法满足实时处理任务的要求。为了解决上述问题,通过将AI模型训练和推理功能嵌入网络边缘,Edge Intelligence(EI)成为AI领域的尖端方向。此外,云,边缘和终端设备之间的协作DNN推断提供了一种有希望的方法来增强EI。然而,目前,以EI为导向的协作DNN推断仍处于早期阶段,缺乏对现有研究工作的系统分类和讨论。因此,我们已经对有关以EI为导向的协作DNN推断的最新研究进行了全面调查。在本文中,我们首先回顾了EI的背景和动机。然后,我们为EI分类了四个典型的DNN推理范例,并分析其特征和关键技术。最后,我们总结了协作DNN推断的当前挑战,讨论未来的发展趋势并提供未来的研究方向。
translated by 谷歌翻译
客户满意度在移动设备中的能源消耗至关重要。应用程序中最耗能的部分之一是图像。尽管具有不同质量的不同图像消耗了不同量的能量,但没有直接的方法来计算典型图像中操作的能量消耗。首先,本文调查了能源消耗与图像质量以及图像文件大小之间存在相关性。因此,这两者可以被视为能源消耗的代理。然后,我们提出了一种多目标策略,以增强图像质量并根据JPEG图像压缩中的定量表减少图像文件大小。为此,我们使用了两种一般的多目标元启发式方法:基于标量和基于帕累托。标量方法找到基于组合不同目标的单个最佳解决方案,而基于帕累托的技术旨在实现一组解决方案。在本文中,我们将策略纳入五种标量算法,包括能量感知的多目标遗传算法(ENMOGA),能量感知的多目标粒子群优化(ENMOPSO),能量感知的多目标多目标差异进化(ENMODE)(ENMODE)(ENMODE) ,能源感知的多目标进化策略(ENMOES)和能量感知的多目标模式搜索(ENMOPS)。此外,使用两种基于帕累托的方法,包括非主导的分类遗传算法(NSGA-II)和基于参考点的NSGA-II(NSGA-III),用于嵌入方案,以及两种基于帕累托的算法,即两种基于帕累托的算法,即提出了Ennsgaii和Ennsgaiii。实验研究表明,基线算法的性能通过将拟议策略嵌入到元启发式算法中来提高。
translated by 谷歌翻译
深入学习模型的压缩在将这些模型部署到边缘设备方面具有根本重要性。在压缩期间,在压缩期间结合硬件模型和应用限制可以最大限度地提高优势,但使其专为一种情况而设计。因此,压缩需要自动化。搜索最佳压缩方法参数被认为是一个优化问题。本文介绍了一种多目标硬件感知量化(MohaQ)方法,其将硬件效率和推理误差视为混合精度量化的目标。该方法通过依赖于两个步骤,在很大的搜索空间中评估候选解决方案。首先,应用训练后量化以进行快速解决方案评估。其次,我们提出了一个名为“基于信标的搜索”的搜索技术,仅在搜索空间中重新选出所选解决方案,并将其用作信标以了解刷新对其他解决方案的影响。为了评估优化潜力,我们使用Timit DataSet选择语音识别模型。该模型基于简单的复发单元(SRU),由于其相当大的加速在其他复发单元上。我们应用了我们在两个平台上运行的方法:SILAGO和BETFUSION。实验评估表明,SRU通过训练后量化可以压缩高达8倍,而误差的任何显着增加,误差只有1.5个百分点增加。在Silago上,唯一的搜索发现解决方案分别实现了最大可能加速和节能的80 \%和64 \%,错误的误差增加了0.5个百分点。在BETFUSION上,对于小SRAM尺寸的约束,基于信标的搜索将推断搜索的错误增益减少4个百分点,并且与BitFusion基线相比,可能的达到的加速度增加到47倍。
translated by 谷歌翻译
Deep neural networks (DNNs) are currently widely used for many artificial intelligence (AI) applications including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Accordingly, techniques that enable efficient processing of DNNs to improve energy efficiency and throughput without sacrificing application accuracy or increasing hardware cost are critical to the wide deployment of DNNs in AI systems.This article aims to provide a comprehensive tutorial and survey about the recent advances towards the goal of enabling efficient processing of DNNs. Specifically, it will provide an overview of DNNs, discuss various hardware platforms and architectures that support DNNs, and highlight key trends in reducing the computation cost of DNNs either solely via hardware design changes or via joint hardware design and DNN algorithm changes. It will also summarize various development resources that enable researchers and practitioners to quickly get started in this field, and highlight important benchmarking metrics and design considerations that should be used for evaluating the rapidly growing number of DNN hardware designs, optionally including algorithmic co-designs, being proposed in academia and industry.The reader will take away the following concepts from this article: understand the key design considerations for DNNs; be able to evaluate different DNN hardware implementations with benchmarks and comparison metrics; understand the trade-offs between various hardware architectures and platforms; be able to evaluate the utility of various DNN design techniques for efficient processing; and understand recent implementation trends and opportunities.
translated by 谷歌翻译
在物联网(IoT)支持的网络边缘(IOT)上的人工智能(AI)的最新进展已通过启用低延期性和计算效率来实现多种应用程序(例如智能农业,智能医院和智能工厂)的优势情报。但是,部署最先进的卷积神经网络(CNN),例如VGG-16和在资源约束的边缘设备上的重新连接,由于其大量参数和浮点操作(Flops),因此实际上是不可行的。因此,将网络修剪作为一种模型压缩的概念正在引起注意在低功率设备上加速CNN。结构化或非结构化的最先进的修剪方法都不认为卷积层表现出的复杂性的不同基本性质,并遵循训练放回训练的管道,从而导致其他计算开销。在这项工作中,我们通过利用CNN的固有层层级复杂性来提出一种新颖和计算高效的修剪管道。与典型的方法不同,我们提出的复杂性驱动算法根据其对整体网络复杂性的贡献选择了特定层用于滤波器。我们遵循一个直接训练修剪模型并避免计算复杂排名和微调步骤的过程。此外,我们定义了修剪的三种模式,即参数感知(PA),拖网(FA)和内存感知(MA),以引入CNN的多功能压缩。我们的结果表明,我们的方法在准确性和加速方面的竞争性能。最后,我们提出了不同资源和准确性之间的权衡取舍,这对于开发人员在资源受限的物联网环境中做出正确的决策可能会有所帮助。
translated by 谷歌翻译
联合学习偏离“将数据发送到模型”的规范“向数据发送模型”。当在边缘生态系统中使用时,许多异构边缘设备通过不同的方式收集数据并通过不同的网络信道连接参与培训过程。由于设备故障或网络问题,这种生态系统中的边缘设备的失败很可能。在本文中,我们首先分析边缘设备数量对FL模型的影响,并提供一种选择有助于该模型的最佳设备的策略。我们观察所选设备失败并提供缓解策略以确保强大的联合学习技术的影响。
translated by 谷歌翻译
已经提出了高效和自适应计算机视觉系统以使计算机视觉任务,例如图像分类和对象检测,针对嵌入或移动设备进行了优化。这些解决方案最近的起源,专注于通过设计具有近似旋钮的自适应系统来优化模型(深神经网络,DNN)或系统。尽管最近的几项努力,但我们表明现有解决方案遭受了两个主要缺点。首先,系统不考虑模型的能量消耗,同时在制定要运行的模型的决定时。其次,由于其他共同居民工作负载,评估不考虑设备上的争用的实际情况。在这项工作中,我们提出了一种高效和自适应的视频对象检测系统,这是联合优化的精度,能量效率和延迟。底层Virtuoso是一个多分支执行内核,它能够在精度 - 能量 - 延迟轴上的不同运行点处运行,以及轻量级运行时调度程序,以选择最佳的执行分支以满足用户要求。要与Virtuoso相当比较,我们基准于15件最先进的或广泛使用的协议,包括更快的R-CNN(FRCNN),YOLO V3,SSD,培训台,SELSA,MEGA,REPP,FastAdapt和我们的内部FRCNN +,YOLO +,SSD +和高效+(我们的变体具有增强的手机效率)的自适应变体。通过这种全面的基准,Virtuoso对所有上述协议显示出优势,在NVIDIA Jetson Mobile GPU上的每一项效率水平上引领精度边界。具体而言,Virtuoso的准确性为63.9%,比一些流行的物体检测模型高于10%,51.1%,yolo为49.5%。
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
深神经网络(DNNS)在各种机器学习(ML)应用程序中取得了巨大成功,在计算机视觉,自然语言处理和虚拟现实等中提供了高质量的推理解决方案。但是,基于DNN的ML应用程序也带来计算和存储要求的增加了很多,对于具有有限的计算/存储资源,紧张的功率预算和较小形式的嵌入式系统而言,这尤其具有挑战性。挑战还来自各种特定应用的要求,包括实时响应,高通量性能和可靠的推理准确性。为了应对这些挑战,我们介绍了一系列有效的设计方法,包括有效的ML模型设计,定制的硬件加速器设计以及硬件/软件共同设计策略,以启用嵌入式系统上有效的ML应用程序。
translated by 谷歌翻译
作为用于多设备协作培训的边缘智能算法,联合学习(FL)可以减轻沟通负担,但增加了无线设备的计算负载。相反,分裂学习(SL)可以通过使用模型分配和分配来减少设备的计算负载,但增加了传递中间结果的通信负担。在本文中,为了利用FL和SL的优势,我们在无线网络中提出了一个混合联合拆分学习(HFSL)框架,该框架结合了FL的多工程平行更新和SL的灵活分裂。为了降低模型拆分中的计算闲置性,我们设计了一个平行计算方案,用于模型分裂而无需标签共享,理论上分析了该方案引起的延迟梯度对收敛速度的影响。为了获得训练时间和能源消耗之间的权衡,我们优化了分裂决策,带宽和计算资源分配。优化问题是多目标的,因此我们提出了一个预测性生成的对抗网络(GAN)功率的多目标优化算法,以获取问题的帕累托正面。实验结果表明,所提出的算法在寻找帕累托最佳溶液方面优于其他算法,而所提出的HFSL的解决方案主导了FL的溶液。
translated by 谷歌翻译
In recent years, deep learning (DL) models have demonstrated remarkable achievements on non-trivial tasks such as speech recognition and natural language understanding. One of the significant contributors to its success is the proliferation of end devices that acted as a catalyst to provide data for data-hungry DL models. However, computing DL training and inference is the main challenge. Usually, central cloud servers are used for the computation, but it opens up other significant challenges, such as high latency, increased communication costs, and privacy concerns. To mitigate these drawbacks, considerable efforts have been made to push the processing of DL models to edge servers. Moreover, the confluence point of DL and edge has given rise to edge intelligence (EI). This survey paper focuses primarily on the fifth level of EI, called all in-edge level, where DL training and inference (deployment) are performed solely by edge servers. All in-edge is suitable when the end devices have low computing resources, e.g., Internet-of-Things, and other requirements such as latency and communication cost are important in mission-critical applications, e.g., health care. Firstly, this paper presents all in-edge computing architectures, including centralized, decentralized, and distributed. Secondly, this paper presents enabling technologies, such as model parallelism and split learning, which facilitate DL training and deployment at edge servers. Thirdly, model adaptation techniques based on model compression and conditional computation are described because the standard cloud-based DL deployment cannot be directly applied to all in-edge due to its limited computational resources. Fourthly, this paper discusses eleven key performance metrics to evaluate the performance of DL at all in-edge efficiently. Finally, several open research challenges in the area of all in-edge are presented.
translated by 谷歌翻译
最近,由于其优越的特征提取性能,深度神经网络(DNN)的应用在诸如计算机视觉(CV)和自然语言处理(NLP)之类的许多领域非常突出。但是,高维参数模型和大规模数学计算限制了执行效率,尤其是用于物联网(IoT)设备。与以前的云/边缘模式不同,为上行链路通信和仅用于设备的设备的巨大压力承担了无法实现的计算强度,我们突出了DNN模型的设备和边缘之间的协作计算,这可以实现良好的平衡通信负载和执行准确性。具体地,提出了一种系统的按需共引起框架来利用多分支结构,其中预先接受的alexNet通过\ emph {早期出口}右尺寸,并在中间DNN层划分。实施整数量化以进一步压缩传输位。结果,我们建立了一个新的深度加强学习(DRL)优化器 - 软演员 - 软件 - 软演员批评者,用于离散(SAC-D),它生成\ emph {退出点},\ emph {partition point},\ emph {压缩位通过软策略迭代。基于延迟和准确性意识奖励设计,这种优化器可以很好地适应动态无线信道等复杂环境和任意CPU处理,并且能够支持5G URLLC。 Raspberry PI 4和PC上的真实世界实验显示了所提出的解决方案的表现。
translated by 谷歌翻译
深度神经网络(DNN)已成为移动和嵌入式系统中的普遍存在的技术,用于图像/对象识别和分类。执行多个DNN的趋势同时加剧了资源受限移动设备上满足严格延迟/准确性要求的现有限制。现有技术通过根据资源动态缩放模型大小来探索精度资源权衡的光。然而,这种模型缩放方法接近迫在眉睫的挑战:(i)模型尺寸的大空间探索,(ii)对不同模型组合的培训时间非常长。在本文中,我们介绍了Legodnn,一种用于在移动视觉系统中运行多DNN工作负载的轻质块粒度缩放解决方案。 Legodnn仅通过在DNN中提取和培训少数常见块(例如,在VGG和RENET中的VGG和8中的8中)来保证短模型培训时间。在运行时,Legodnn最佳地结合了这些块的后代模型,以最大限度地在特定资源和延迟约束下最大限度地提高精度,同时通过DNN的智能块级缩放来降低切换开销。我们在Tensorflow Lite中实现Legodnn,并通过一组普遍的DNN模型,广泛地评估了最先进的技术(浮标缩放,知识蒸馏和模型压缩)。评估结果表明,乐高达在模型尺寸下提供了1,296倍至279,936倍,而在不增加训练时间的情况下,推断准确性的提高高达31.74%,降低缩放能耗减少了71.07%。
translated by 谷歌翻译
网络体系结构设计的持续进步导致了各种具有挑战性的计算机视觉任务的深入学习取得的显着成就。同时,神经体系结构搜索(NAS)的开发提供了有前途的方法来自动化网络体系结构的设计,从而获得较低的预测错误。最近,深入学习的新兴应用程序方案提高了考虑多个设计标准的网络体系结构的更高需求:参数/浮点操作的数量以及推理延迟等。从优化的角度来看,涉及多个设计标准的NAS任务是本质上多目标优化问题。因此,采用进化的多目标优化(EMO)算法来解决它们是合理的。尽管如此,仍然存在一个明显的差距,将相关研究沿着这一途径限制:一方面,从优化的角度出发,缺乏NAS任务的一般问题。另一方面,在NAS任务上对EMO算法进行基准评估存在挑战。弥合差距:(i)我们将NAS任务制定为一般的多目标优化问题,并从优化的角度分析复杂特征; (ii)我们提出了一条端到端管道,称为$ \ texttt {evoxbench} $,以生成Emo算法的基准测试问题,以有效运行 - 无需GPU或Pytorch/tensorflow; (iii)我们实例化了两个测试套件,全面涵盖了两个数据集,七个搜索空间和三个硬件设备,最多涉及八个目标。基于上述内容,我们使用六种代表性的EMO算法验证了提出的测试套件,并提供了一些经验分析。 $ \ texttt {evoxBench} $的代码可从$ \ href {https://github.com/emi-group/evoxbench} {\ rm {there}} $。
translated by 谷歌翻译
我们研究了具有异构,有限的和时变的计算资源可用性的设备上神经网络(NNS)的分布式训练问题。我们提出了一种自适应,资源感知的设备上学习机制,诈骗性,其能够以分布式方式完全和高效地利用设备上的可用资源,增加收敛速度。这是通过辍学机制实现的,该机制通过随机丢弃模型的卷积层的滤波器来动态调整训练NN的计算复杂性。我们的主要贡献是引入设计空间探索(DSE)技术,其在训练的资源需求和收敛速度上找到了Paripo-Optimal的每层丢弃向量。应用此技术,每个设备都能够动态地选择丢弃载体,符合其可用资源而不需要服务器的任何帮助。我们在联合学习(FL)系统中实施我们的解决方案,计算资源的可用性在设备和随着时间的推移之间变化,并且通过广泛的评估显示我们能够在不损害的情况下显着增加艺术状态的收敛速度最终准确性。
translated by 谷歌翻译
HyperParameter Optimization(HPO)是一种确保机器学习(ML)算法最佳性能的必要步骤。已经开发了几种方法来执行HPO;其中大部分都集中在优化一个性能措施(通常是基于错误的措施),并且在这种单一目标HPO问题上的文献是巨大的。然而,最近似乎似乎侧重于同时优化多个冲突目标的算法。本文提出了对2014年至2020年的文献的系统调查,在多目标HPO算法上发布,区分了基于成逐的算法,Metamodel的算法以及使用两者混合的方法。我们还讨论了用于比较多目标HPO程序和今后的研究方向的质量指标。
translated by 谷歌翻译
Video, as a key driver in the global explosion of digital information, can create tremendous benefits for human society. Governments and enterprises are deploying innumerable cameras for a variety of applications, e.g., law enforcement, emergency management, traffic control, and security surveillance, all facilitated by video analytics (VA). This trend is spurred by the rapid advancement of deep learning (DL), which enables more precise models for object classification, detection, and tracking. Meanwhile, with the proliferation of Internet-connected devices, massive amounts of data are generated daily, overwhelming the cloud. Edge computing, an emerging paradigm that moves workloads and services from the network core to the network edge, has been widely recognized as a promising solution. The resulting new intersection, edge video analytics (EVA), begins to attract widespread attention. Nevertheless, only a few loosely-related surveys exist on this topic. A dedicated venue for collecting and summarizing the latest advances of EVA is highly desired by the community. Besides, the basic concepts of EVA (e.g., definition, architectures, etc.) are ambiguous and neglected by these surveys due to the rapid development of this domain. A thorough clarification is needed to facilitate a consensus on these concepts. To fill in these gaps, we conduct a comprehensive survey of the recent efforts on EVA. In this paper, we first review the fundamentals of edge computing, followed by an overview of VA. The EVA system and its enabling techniques are discussed next. In addition, we introduce prevalent frameworks and datasets to aid future researchers in the development of EVA systems. Finally, we discuss existing challenges and foresee future research directions. We believe this survey will help readers comprehend the relationship between VA and edge computing, and spark new ideas on EVA.
translated by 谷歌翻译
Designing convolutional neural networks (CNN) for mobile devices is challenging because mobile models need to be small and fast, yet still accurate. Although significant efforts have been dedicated to design and improve mobile CNNs on all dimensions, it is very difficult to manually balance these trade-offs when there are so many architectural possibilities to consider. In this paper, we propose an automated mobile neural architecture search (MNAS) approach, which explicitly incorporate model latency into the main objective so that the search can identify a model that achieves a good trade-off between accuracy and latency. Unlike previous work, where latency is considered via another, often inaccurate proxy (e.g., FLOPS), our approach directly measures real-world inference latency by executing the model on mobile phones. To further strike the right balance between flexibility and search space size, we propose a novel factorized hierarchical search space that encourages layer diversity throughout the network. Experimental results show that our approach consistently outperforms state-of-the-art mobile CNN models across multiple vision tasks. On the ImageNet classification task, our MnasNet achieves 75.2% top-1 accuracy with 78ms latency on a Pixel phone, which is 1.8× faster than MobileNetV2 [29] with 0.5% higher accuracy and 2.3× faster than NASNet [36] with 1.2% higher accuracy. Our MnasNet also achieves better mAP quality than MobileNets for COCO object detection. Code is at https://github.com/tensorflow/tpu/ tree/master/models/official/mnasnet.
translated by 谷歌翻译