语义细分是一项具有挑战性的计算机视觉任务,要求大量像素级注释数据。产生此类数据是一个耗时且昂贵的过程,尤其是对于缺乏专家(例如医学或法医人类学)的领域。尽管已经开发了许多半监督方法,以从有限的标记数据和大量未标记的数据中获得最大的收益,但特定于领域的现实世界数据集通常具有特征,这些特征既可以降低现成的现成状态的有效性艺术方法,还提供了创建利用这些特征的新方法的机会。我们提出并评估一种半监督的方法,该方法通过利用现有相似性来重用可用的数据集图像,同时动态加权这些重复使用标签在培训过程中的影响。我们在人类分解图像的大数据集上评估了我们的方法,并发现我们的方法虽然在概念上却优于最先进的一致性和基于伪标记的方法,用于分割此数据集。本文包括人类分解的图形内容。
translated by 谷歌翻译
In this paper, we present a novel cross-consistency based semi-supervised approach for semantic segmentation. Consistency training has proven to be a powerful semisupervised learning framework for leveraging unlabeled data under the cluster assumption, in which the decision boundary should lie in low density regions. In this work, we first observe that for semantic segmentation, the low density regions are more apparent within the hidden representations than within the inputs. We thus propose crossconsistency training, where an invariance of the predictions is enforced over different perturbations applied to the outputs of the encoder. Concretely, a shared encoder and a main decoder are trained in a supervised manner using the available labeled examples. To leverage the unlabeled examples, we enforce a consistency between the main decoder predictions and those of the auxiliary decoders, taking as inputs different perturbed versions of the encoder's output, and consequently, improving the encoder's representations. The proposed method is simple and can easily be extended to use additional training signal, such as image-level labels or pixel-level labels across different domains. We perform an ablation study to tease apart the effectiveness of each component, and conduct extensive experiments to demonstrate that our method achieves stateof-the-art results in several datasets.
translated by 谷歌翻译
我们对最近的自我和半监督ML技术进行严格的评估,从而利用未标记的数据来改善下游任务绩效,以河床分割的三个遥感任务,陆地覆盖映射和洪水映射。这些方法对于遥感任务特别有价值,因为易于访问未标记的图像,并获得地面真理标签通常可以昂贵。当未标记的图像(标记数据集之外)提供培训时,我们量化性能改进可以对这些遥感分割任务进行期望。我们还设计实验以测试这些技术的有效性,当测试集相对于训练和验证集具有域移位时。
translated by 谷歌翻译
产生密集的注释数据是医学成像应用的困难而繁琐的任务。为了解决这个问题,我们提出了一种新颖的方法来为半监督语义细分产生监督。我们认为标记和未标记的图像之间的视觉上类似的区域可能包含相同的语义,因此应分享其标签。在此思想之后,我们使用少量标记的图像作为参考材料,并将未标记图像中的像素匹配到参考集中的最佳配合像素的语义。这样,我们避免诸如确认偏差的陷阱,纯粹是基于预测的伪标记。由于我们的方法不需要任何架构更改或伴随网络,因此可以轻松地将其插入现有框架中。我们在X射线解剖分段上实现了与标准完全监督模型相同的性能,尽管标记图像较少95%。除了对我们提出的方法的不同方面的深入分析,我们还通过比较我们对现有方法的方法对具有竞争性能的视网膜流体细分的现有方法来展示我们的参考引导学习范例的有效性,因为我们改进最近的工作15%的意思是iou。
translated by 谷歌翻译
Jitendra Malik once said, "Supervision is the opium of the AI researcher". Most deep learning techniques heavily rely on extreme amounts of human labels to work effectively. In today's world, the rate of data creation greatly surpasses the rate of data annotation. Full reliance on human annotations is just a temporary means to solve current closed problems in AI. In reality, only a tiny fraction of data is annotated. Annotation Efficient Learning (AEL) is a study of algorithms to train models effectively with fewer annotations. To thrive in AEL environments, we need deep learning techniques that rely less on manual annotations (e.g., image, bounding-box, and per-pixel labels), but learn useful information from unlabeled data. In this thesis, we explore five different techniques for handling AEL.
translated by 谷歌翻译
Open-World实例细分(OWIS)旨在从图像中分割类不足的实例,该图像具有广泛的现实应用程序,例如自主驾驶。大多数现有方法遵循两阶段的管道:首先执行类不足的检测,然后再进行特定于类的掩模分段。相比之下,本文提出了一个单阶段框架,以直接为每个实例生成掩码。另外,实例掩码注释在现有数据集中可能很吵。为了克服这个问题,我们引入了新的正规化损失。具体而言,我们首先训练一个额外的分支来执行预测前景区域的辅助任务(即属于任何对象实例的区域),然后鼓励辅助分支的预测与实例掩码的预测一致。关键的见解是,这种交叉任务一致性损失可以充当误差校正机制,以打击注释中的错误。此外,我们发现所提出的跨任务一致性损失可以应用于图像,而无需任何注释,将自己借给了半监督的学习方法。通过广泛的实验,我们证明了所提出的方法可以在完全监督和半监督的设置中获得令人印象深刻的结果。与SOTA方法相比,所提出的方法将$ ap_ {100} $得分提高了4.75 \%\%\%\ rightarrow $ uvo设置和4.05 \%\%\%\%\%\%\ rightarrow $ uvo设置。在半监督学习的情况下,我们的模型仅使用30 \%标记的数据学习,甚至超过了其完全监督的数据,并具有5​​0 \%标记的数据。该代码将很快发布。
translated by 谷歌翻译
半监督学习是一个具有挑战性的问题,旨在通过从有限标记的例子学习来构建模型。此任务的许多方法侧重于利用单独的未标记实例的预测,以单独进行正规化网络。然而,分别处理标记和未标记的数据通常导致从标记的例子中学习的质量事先知识的丢弃。 %,并且未能在标记和未标记的图像对之间的特征交互。在本文中,我们提出了一种新的半监督语义细分方法,名为Guidedmix-Net,通过利用标签信息来指导未标记的实例的学习。具体而言,Guidedmix-Net采用三种操作:1)类似标记的未标记图像对的插值; 2)转让互动信息; 3)伪面具的概括。它使分段模型可以通过将知识从标记的样本转移到未标记的数据来学习未标记数据的更高质量的伪掩模。除了用于标记数据的监督学习之外,使用来自混合数据的生成的伪掩模共同学习未标记数据的预测。对Pascal VOC的大量实验2012年,城市景观展示了我们的Guidedmix-Net的有效性,这实现了竞争性的细分准确性,并与以前的方法相比,通过+7美元\%$大大改善Miou。
translated by 谷歌翻译
监管基于深度学习的方法,产生医学图像分割的准确结果。但是,它们需要大量标记的数据集,并获得它们是一种艰苦的任务,需要临床专业知识。基于半/自我监督的学习方法通​​过利用未标记的数据以及有限的注释数据来解决此限制。最近的自我监督学习方法使用对比损失来从未标记的图像中学习良好的全球层面表示,并在像想象网那样的流行自然图像数据集上实现高性能。在诸如分段的像素级预测任务中,对于学习良好的本地级别表示以及全局表示来说至关重要,以实现更好的准确性。然而,现有的局部对比损失的方法的影响仍然是学习良好本地表现的限制,因为类似于随机增强和空间接近定义了类似和不同的局部区域;由于半/自我监督设置缺乏大规模专家注释,而不是基于当地地区的语义标签。在本文中,我们提出了局部对比损失,以便通过利用从未标记的图像的未标记图像的伪标签获得的语义标签信息来学习用于分割的良好像素级别特征。特别地,我们定义了建议的损失,以鼓励具有相同伪标签/标签的像素的类似表示,同时与数据集中的不同伪标签/标签的像素的表示。我们通过联合优化标记和未标记的集合和仅限于标记集的分割损失,通过联合优化拟议的对比损失来进行基于伪标签的自培训和培训网络。我们在三个公共心脏和前列腺数据集上进行了评估,并获得高分割性能。
translated by 谷歌翻译
在这项工作中,我们重新审视了弱到较强的一致性框架,该框架由半监视分类的FixMatch推广,在该分类中,对弱扰动的图像的预测可作为其强烈扰动版本的监督。有趣的是,我们观察到,这种简单的管道已经转移到我们的细分方案时已经在最近的高级工作中取得了竞争成果。它的成功在很大程度上依赖于强大数据增强的手动设计,但是,这可能是有限的,并且不足以探索更广泛的扰动空间。在此激励的情况下,我们提出了一个辅助特征扰动流作为补充,从而导致了扩大的扰动空间。另一方面,为了充分探测原始的图像级增强,我们提出了一种双流扰动技术,从而使两个强大的观点能够同时受到共同的弱视图的指导。因此,我们整体统一的双流扰动方法(Unipatch)在Pascal,CityScapes和Coco基准的所有评估方案中都显着超过所有现有方法。我们还证明了我们方法在遥感解释和医学图像分析中的优越性。代码可从https://github.com/liheyoung/unimatch获得。
translated by 谷歌翻译
在最近的半监督语义分割方法中,一致性正则化已被广泛研究。从图像,功能和网络扰动中受益,已经实现了出色的性能。为了充分利用这些扰动,在这项工作中,我们提出了一个新的一致性正则化框架,称为相互知识蒸馏(MKD)。我们创新地基于一致性正则化方法,创新了两个辅助均值老师模型。更具体地说,我们使用一位卑鄙的老师生成的伪标签来监督另一个学生网络,以在两个分支之间进行相互知识蒸馏。除了使用图像级强和弱的增强外,我们还采用了特征增强,考虑隐性语义分布来增加对学生的进一步扰动。提出的框架大大增加了训练样本的多样性。公共基准测试的广泛实验表明,我们的框架在各种半监督设置下都优于先前的最先进方法(SOTA)方法。
translated by 谷歌翻译
Pseudo supervision is regarded as the core idea in semi-supervised learning for semantic segmentation, and there is always a tradeoff between utilizing only the high-quality pseudo labels and leveraging all the pseudo labels. Addressing that, we propose a novel learning approach, called Conservative-Progressive Collaborative Learning (CPCL), among which two predictive networks are trained in parallel, and the pseudo supervision is implemented based on both the agreement and disagreement of the two predictions. One network seeks common ground via intersection supervision and is supervised by the high-quality labels to ensure a more reliable supervision, while the other network reserves differences via union supervision and is supervised by all the pseudo labels to keep exploring with curiosity. Thus, the collaboration of conservative evolution and progressive exploration can be achieved. To reduce the influences of the suspicious pseudo labels, the loss is dynamic re-weighted according to the prediction confidence. Extensive experiments demonstrate that CPCL achieves state-of-the-art performance for semi-supervised semantic segmentation.
translated by 谷歌翻译
The core issue in semi-supervised learning (SSL) lies in how to effectively leverage unlabeled data, whereas most existing methods tend to put a great emphasis on the utilization of high-confidence samples yet seldom fully explore the usage of low-confidence samples. In this paper, we aim to utilize low-confidence samples in a novel way with our proposed mutex-based consistency regularization, namely MutexMatch. Specifically, the high-confidence samples are required to exactly predict "what it is" by conventional True-Positive Classifier, while the low-confidence samples are employed to achieve a simpler goal -- to predict with ease "what it is not" by True-Negative Classifier. In this sense, we not only mitigate the pseudo-labeling errors but also make full use of the low-confidence unlabeled data by consistency of dissimilarity degree. MutexMatch achieves superior performance on multiple benchmark datasets, i.e., CIFAR-10, CIFAR-100, SVHN, STL-10, mini-ImageNet and Tiny-ImageNet. More importantly, our method further shows superiority when the amount of labeled data is scarce, e.g., 92.23% accuracy with only 20 labeled data on CIFAR-10. Our code and model weights have been released at https://github.com/NJUyued/MutexMatch4SSL.
translated by 谷歌翻译
手术场景细分对于促使机器人手术的认知援助至关重要。但是,以逐帧方式以像素为单位的注释视频是昂贵且耗时的。为了大大减轻标签负担,在这项工作中,我们从机器人手术视频中研究了半监督的场景细分,这实际上是必不可少的,但以前很少探索。我们考虑在等距采样下的临床上适当的注释情况。然后,我们提出了PGV-CL,这是一种新型的伪标签引导的跨视频对比学习方法,以增强场景分割。它有效地利用了未标记的数据来实现可信赖和全球模型的正则化,从而产生更具歧视性的特征表示。具体来说,对于可信赖的表示学习,我们建议合并伪标签以指导对选择,从而获得更可靠的代表对像素对比度。此外,我们将代表学习空间从以前的图像级扩展到交叉视频,该图像可以捕获全球语义以使学习过程受益。我们广泛评估了公共机器人手术数据集Edovis18和公共白内障数据集Cadis的方法。实验结果证明了我们方法的有效性,在不同的标签比下始终超过了最先进的半监督方法,甚至超过了10.1%标签的destovis18上的全面监督培训。
translated by 谷歌翻译
在社区中广泛调查了语义分割,其中最先进的技术基于监督模型。这些模型报告了前所未有的性能,以需要大量的高质量细分面具。为了获得这种注释是非常昂贵的并且特别是在需要像素级注释的语义分割中。在这项工作中,我们通过提出作为半监督语义细分的三级自我训练框架的整体解决方案来解决这个问题。我们技术的关键思想是提取伪掩模统计信息,以减少预测概率的不确定性,同时以多任务方式执行分段一致性。我们通过三级解决方案实现这一目标。首先,我们训练分割网络以产生粗糙的伪掩模,预测概率非常不确定。其次,我们使用一个多任务模型来减少伪掩模的不确定性,该模型强制利用数据丰富的数据统计信息。我们将采用现有方法与半监督语义分割的现有方法进行比较,并在广泛的实验中展示其最先进的性能。
translated by 谷歌翻译
自我训练在半监督学习中表现出巨大的潜力。它的核心思想是使用在标记数据上学习的模型来生成未标记样本的伪标签,然后自我教学。为了获得有效的监督,主动尝试通常会采用动量老师进行伪标签的预测,但要观察确认偏见问题,在这种情况下,错误的预测可能会提供错误的监督信号并在培训过程中积累。这种缺点的主要原因是,现行的自我训练框架充当以前的知识指导当前状态,因为老师仅与过去的学生更新。为了减轻这个问题,我们提出了一种新颖的自我训练策略,该策略使模型可以从未来学习。具体而言,在每个培训步骤中,我们都会首先优化学生(即,在不将其应用于模型权重的情况下缓存梯度),然后用虚拟未来的学生更新老师,最后要求老师为伪标记生产伪标签目前的学生作为指导。这样,我们设法提高了伪标签的质量,从而提高了性能。我们还通过深入(FST-D)和广泛(FST-W)窥视未来,开发了我们未来自我训练(FST)框架的两个变体。将无监督的域自适应语义分割和半监督语义分割的任务作为实例,我们在广泛的环境下实验表明了我们方法的有效性和优越性。代码将公开可用。
translated by 谷歌翻译
深度学习已成为火星探索的强大工具。火星地形细分是一项重要的火星愿景任务,它是漫游者自动计划和安全驾驶的基础。但是,现有的基于深度学习的地形细分方法遇到了两个问题:一个是缺乏足够的详细和高信心注释,另一个是模型过度依赖于注释的培训数据。在本文中,我们从联合数据和方法设计的角度解决了这两个问题。我们首先提出了一个新的火星地形细分数据集,该数据集包含6K高分辨率图像,并根据置信度稀疏注释,以确保标签的高质量。然后从这些稀疏的数据中学习,我们为火星地形细分的基于表示的学习框架,包括一个自我监督的学习阶段(用于预训练)和半监督的学习阶段(用于微调)。具体而言,对于自我监督的学习,我们设计了一个基于掩盖图像建模(MIM)概念的多任务机制,以强调图像的纹理信息。对于半监督的学习,由于我们的数据集很少注释,因此我们鼓励该模型通过在线生成和利用伪标签来挖掘每个图像中未标记的区域的信息。我们将数据集和方法命名为MARS(S $^{5} $ MARS)的自我监督和半监督分割。实验结果表明,我们的方法可以超越最先进的方法,并通过很大的边距提高地形分割性能。
translated by 谷歌翻译
一个常见的分类任务情况是,有大量数据可用于培训,但只有一小部分用类标签注释。在这种情况下,半监督培训的目的是通过利用标记数据,而且从大量未标记的数据中提高分类准确性。最近的作品通过探索不同标记和未标记数据的不同增强性数据之间的一致性约束,从而取得了重大改进。遵循这条路径,我们提出了一个新颖的无监督目标,该目标侧重于彼此相似的高置信度未标记的数据之间所研究的关系较少。新提出的对损失最大程度地减少了高置信度伪伪标签之间的统计距离,其相似性高于一定阈值。我们提出的简单算法将对损失与MixMatch家族开发的技术结合在一起,显示出比以前在CIFAR-100和MINI-IMAGENET上的算法的显着性能增长,并且与CIFAR-的最先进方法相当。 10和SVHN。此外,简单还优于传输学习设置中最新方法,其中模型是由在ImainEnet或域内实现的权重初始化的。该代码可在github.com/zijian-hu/simple上获得。
translated by 谷歌翻译
强大的语义细分面临的一个普遍挑战是昂贵的数据注释成本。现有的半监督解决方案显示出解决此问题的巨大潜力。他们的关键想法是通过未经监督的数据增加未标记的数据来构建一致性正则化,以进行模型培训。未标记数据的扰动使一致性训练损失使半监督的语义分割受益。但是,这些扰动破坏了图像上下文并引入了不自然的边界,这对语义分割是有害的。此外,广泛采用的半监督学习框架,即均值老师,遭受了绩效限制,因为学生模型最终会收敛于教师模型。在本文中,首先,我们提出了一个友好的可区分几何扭曲,以进行无监督的数据增强。其次,提出了一个新颖的对抗双重学生框架,以从以下两个方面从以下两个方面改善均等老师:(1)双重学生模型是独立学习的,除了稳定约束以鼓励利用模型多样性; (2)对对抗性训练计划适用于学生,并诉诸歧视者以区分无标记数据的可靠伪标签进行自我训练。通过对Pascal VOC2012和CityScapes进行的广泛实验来验证有效性。我们的解决方案可显着提高两个数据集的性能和最先进的结果。值得注意的是,与完全监督相比,我们的解决方案仅使用Pascal VOC2012上的12.5%注释数据获得了73.4%的可比MIOU。我们的代码和模型可在https://github.com/caocong/ads-semiseg上找到。
translated by 谷歌翻译
点云的语义分割通常依赖于累累且昂贵的致密注释,因此它吸引了广泛的关注,以研究弱监督方案的解决方案,仅稀疏点注释。现有作品从给定的标签开始,并将其传播到高度相关但无标记的点,例如数据的指导,例如内部关系。但是,它遭受了(i)对数据信息的效率低下的利用,并且(ii)在给出更少的注释时,很容易抑制对标签的强烈依赖。因此,我们提出了一个新颖的框架,即DimpMatch,它通过将一致性正则化应用于数据本身的足够探测信息,并同时利用弱标签作为帮助,该框架具有数据和标签。通过这样做,可以从数据和标签中学习有意义的信息,以获得更好的表示,这也使模型可以在标签稀疏度的范围内更强大。简单而有效的是,提议的尖头竞赛在Scannet-V2和S3DIS数据集上都在各种弱监督的方案下实现了最先进的性能,尤其是在具有极为稀疏标签的设置上,例如。在0.01%和0.1%的扫描仪V2设置上,SQN超过21.2%和17.2%。
translated by 谷歌翻译
强大的海上障碍物检测对于安全导航自动船和及时避免碰撞至关重要。当前的最新技术基于在大型数据集上训练的深度分割网络。但是,此类数据集的每个像素地面真相标签是劳动密集型且昂贵的。我们提出了一个新的脚手架学习制度(SLR),该制度利用薄弱的注释,包括水边缘,地平线和障碍物边界框来训练基于细分的障碍物检测网络,从而将所需的地面真相标记工作减少了21倍。 SLR从弱注释中训练初始模型,然后在重新估计分割伪标签和改进网络参数之间交替。实验表明,在弱标签上使用SLR训练的海上障碍分割网络不仅匹配,而且优于接受密集地面真相标签的相同网络,这是一个了不起的结果。除了提高精度外,SLR还增加了域的概括,可用于较低的手动注释负载,用于域的适应性。代码和预培训模型可在https://github.com/lojzezust/slr上找到。
translated by 谷歌翻译