局部性的好处是石灰的主要前提之一,这是解释黑盒机器学习模型的最突出方法之一。这种强调依赖于一个假设,即我们在本地观察实例附近的越多,黑框模型变得越简单,并且我们可以用线性替代物模拟它越准确。尽管如此,我们的发现似乎是合乎逻辑的,表明,借助石灰的当前设计,当解释过于本地时,即当带宽参数$ \ sigma $趋于零时,替代模型可能会退化。基于此观察,本文的贡献是双重的。首先,我们研究带宽和培训附近对石灰解释的忠诚度和语义的影响。其次,基于我们的发现,我们提出了\史莱姆,这是一种调和忠诚度和位置的石灰的扩展。
translated by 谷歌翻译
Explainable artificial intelligence is proposed to provide explanations for reasoning performed by an Artificial Intelligence. There is no consensus on how to evaluate the quality of these explanations, since even the definition of explanation itself is not clear in the literature. In particular, for the widely known Local Linear Explanations, there are qualitative proposals for the evaluation of explanations, although they suffer from theoretical inconsistencies. The case of image is even more problematic, where a visual explanation seems to explain a decision while detecting edges is what it really does. There are a large number of metrics in the literature specialized in quantitatively measuring different qualitative aspects so we should be able to develop metrics capable of measuring in a robust and correct way the desirable aspects of the explanations. In this paper, we propose a procedure called REVEL to evaluate different aspects concerning the quality of explanations with a theoretically coherent development. This procedure has several advances in the state of the art: it standardizes the concepts of explanation and develops a series of metrics not only to be able to compare between them but also to obtain absolute information regarding the explanation itself. The experiments have been carried out on image four datasets as benchmark where we show REVEL's descriptive and analytical power.
translated by 谷歌翻译
由于它们在建模复杂的问题和处理高维数据集的有效性,因此已显示深神网络(DNN)在广泛的应用领域中的传统机器学习算法优于传统的机器学习算法。但是,许多现实生活数据集具有越来越高的维度,其中大量功能可能与手头的任务无关。包含此类功能不仅会引入不必要的噪声,还会提高计算复杂性。此外,由于许多特征之间的非线性和依赖性高,DNN模型往往不可避免地是不透明的,并且被视为黑盒方法,因为它们的内部功能不佳。解释良好的模型可以识别具有统计学意义的特征,并解释其影响模型结果的方式。在本文中,我们提出了一种有效的方法,可以在高维数据集的情况下提高黑框模型的分类任务。为此,我们首先在高维数据集上训练黑框模型,以了解执行分类的嵌入。为了分解黑框模型的内部工作原理并确定TOP-K重要特征,我们采用了不同的探测和扰动技术。然后,我们通过在TOP-K特征空间上通过可解释的替代模型来近似黑框模型的行为。最后,我们从替代模型中得出决策规则和本地解释,以解释个人决策。当在不同数据集上测试,尺寸在50到20,000之间的不同数据集上进行测试时,我们的方法优于最先进的方法,例如TABNET,XGBOOST和基于Shap的可解释性技术。
translated by 谷歌翻译
在本文中,我们对在表格数据的情况下进行了详尽的理论分析。我们证明,在较大的样本限制中,可以按照算法参数的函数以及与黑框模型相关的一些期望计算来计算表格石灰提供的可解释系数。当要解释的函数具有一些不错的代数结构(根据坐标的子集,线性,乘法或稀疏)时,我们的分析提供了对Lime提供的解释的有趣见解。这些可以应用于一系列机器学习模型,包括高斯内核或卡车随机森林。例如,对于线性函数,我们表明Lime具有理想的属性,可以提供与函数系数成正比的解释,以解释并忽略该函数未使用的坐标来解释。对于基于分区的回归器,另一方面,我们表明石灰会产生可能提供误导性解释的不希望的人工制品。
translated by 谷歌翻译
Automated Machine Learning-based systems' integration into a wide range of tasks has expanded as a result of their performance and speed. Although there are numerous advantages to employing ML-based systems, if they are not interpretable, they should not be used in critical, high-risk applications where human lives are at risk. To address this issue, researchers and businesses have been focusing on finding ways to improve the interpretability of complex ML systems, and several such methods have been developed. Indeed, there are so many developed techniques that it is difficult for practitioners to choose the best among them for their applications, even when using evaluation metrics. As a result, the demand for a selection tool, a meta-explanation technique based on a high-quality evaluation metric, is apparent. In this paper, we present a local meta-explanation technique which builds on top of the truthfulness metric, which is a faithfulness-based metric. We demonstrate the effectiveness of both the technique and the metric by concretely defining all the concepts and through experimentation.
translated by 谷歌翻译
我们在电影推荐任务上评估了两种流行的本地解释性技术,即石灰和外形。我们发现,这两种方法的行为取决于数据集的稀疏性。在数据集的密集段中,石灰的表现要好,而在稀疏段中,shap的表现更好。我们将这种差异追溯到石灰和摇动​​基础估计量的不同偏差变化特征。我们发现,与石灰相比,SHAP在数据的稀疏段中表现出较低的方差。我们将这种较低的差异归因于Shap和Lime中缺少的完整性约束属性。该约束是正规化器,因此增加了Shap估计器的偏差,但会降低其差异,从而导致良好的偏见差异权衡,尤其是在高稀疏数据设置中。有了这个见解,我们将相同的约束引入石灰,并制定了一个新颖的局部解释框架,称为完整性约束的石灰(攀爬),比石灰优于石灰,速度比Shap更快。
translated by 谷歌翻译
Despite widespread adoption, machine learning models remain mostly black boxes. Understanding the reasons behind predictions is, however, quite important in assessing trust, which is fundamental if one plans to take action based on a prediction, or when choosing whether to deploy a new model. Such understanding also provides insights into the model, which can be used to transform an untrustworthy model or prediction into a trustworthy one.In this work, we propose LIME, a novel explanation technique that explains the predictions of any classifier in an interpretable and faithful manner, by learning an interpretable model locally around the prediction. We also propose a method to explain models by presenting representative individual predictions and their explanations in a non-redundant way, framing the task as a submodular optimization problem. We demonstrate the flexibility of these methods by explaining different models for text (e.g. random forests) and image classification (e.g. neural networks). We show the utility of explanations via novel experiments, both simulated and with human subjects, on various scenarios that require trust: deciding if one should trust a prediction, choosing between models, improving an untrustworthy classifier, and identifying why a classifier should not be trusted.
translated by 谷歌翻译
Interpretability provides a means for humans to verify aspects of machine learning (ML) models and empower human+ML teaming in situations where the task cannot be fully automated. Different contexts require explanations with different properties. For example, the kind of explanation required to determine if an early cardiac arrest warning system is ready to be integrated into a care setting is very different from the type of explanation required for a loan applicant to help determine the actions they might need to take to make their application successful. Unfortunately, there is a lack of standardization when it comes to properties of explanations: different papers may use the same term to mean different quantities, and different terms to mean the same quantity. This lack of a standardized terminology and categorization of the properties of ML explanations prevents us from both rigorously comparing interpretable machine learning methods and identifying what properties are needed in what contexts. In this work, we survey properties defined in interpretable machine learning papers, synthesize them based on what they actually measure, and describe the trade-offs between different formulations of these properties. In doing so, we enable more informed selection of task-appropriate formulations of explanation properties as well as standardization for future work in interpretable machine learning.
translated by 谷歌翻译
最先进的实体匹配(EM)方法很难解释,并且为EM带来可解释的AI具有重要的价值。不幸的是,大多数流行的解释性方法无法开箱即用,需要适应。在本文中,我们确定了将本地事后特征归因方法应用于实体匹配的三个挑战:跨记录的交互作用,不匹配的解释和灵敏度变化。我们提出了新颖的模型 - 静态和模式 - 富含模型的方法柠檬柠檬,该方法通过(i)产生双重解释来避免交叉记录的互动效果来应对所有三个挑战,(ii)介绍了归因潜力的新颖概念,以解释两个记录如何能够拥有如何具有匹配,(iii)自动选择解释粒度以匹配匹配器和记录对的灵敏度。公共数据集上的实验表明,所提出的方法更忠实于匹配器,并且在帮助用户了解匹配器的决策边界的工作中比以前的工作更具忠诚度。此外,用户研究表明,与标准的解释相比石灰的适应。
translated by 谷歌翻译
Explainability has been widely stated as a cornerstone of the responsible and trustworthy use of machine learning models. With the ubiquitous use of Deep Neural Network (DNN) models expanding to risk-sensitive and safety-critical domains, many methods have been proposed to explain the decisions of these models. Recent years have also seen concerted efforts that have shown how such explanations can be distorted (attacked) by minor input perturbations. While there have been many surveys that review explainability methods themselves, there has been no effort hitherto to assimilate the different methods and metrics proposed to study the robustness of explanations of DNN models. In this work, we present a comprehensive survey of methods that study, understand, attack, and defend explanations of DNN models. We also present a detailed review of different metrics used to evaluate explanation methods, as well as describe attributional attack and defense methods. We conclude with lessons and take-aways for the community towards ensuring robust explanations of DNN model predictions.
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
A significant drawback of eXplainable Artificial Intelligence (XAI) approaches is the assumption of feature independence. This paper focuses on integrating causal knowledge in XAI methods to increase trust and help users assess explanations' quality. We propose a novel extension to a widely used local and model-agnostic explainer that explicitly encodes causal relationships in the data generated around the input instance to explain. Extensive experiments show that our method achieves superior performance comparing the initial one for both the fidelity in mimicking the black-box and the stability of the explanations.
translated by 谷歌翻译
Understanding why a model makes certain predictions is crucial when adapting it for real world decision making. LIME is a popular model-agnostic feature attribution method for the tasks of classification and regression. However, the task of learning to rank in information retrieval is more complex in comparison with either classification or regression. In this work, we extend LIME to propose Rank-LIME, a model-agnostic, local, post-hoc linear feature attribution method for the task of learning to rank that generates explanations for ranked lists. We employ novel correlation-based perturbations, differentiable ranking loss functions and introduce new metrics to evaluate ranking based additive feature attribution models. We compare Rank-LIME with a variety of competing systems, with models trained on the MS MARCO datasets and observe that Rank-LIME outperforms existing explanation algorithms in terms of Model Fidelity and Explain-NDCG. With this we propose one of the first algorithms to generate additive feature attributions for explaining ranked lists.
translated by 谷歌翻译
由于黑匣子的解释越来越多地用于在高赌注设置中建立模型可信度,重要的是确保这些解释准确可靠。然而,事先工作表明,最先进的技术产生的解释是不一致的,不稳定的,并且提供了对它们的正确性和可靠性的极少了解。此外,这些方法也在计算上效率低下,并且需要显着的超参数调谐。在本文中,我们通过开发一种新的贝叶斯框架来涉及用于产生当地解释以及相关的不确定性来解决上述挑战。我们将本框架实例化以获取贝叶斯版本的石灰和kernelshap,其为特征重要性输出可靠的间隔,捕获相关的不确定性。由此产生的解释不仅使我们能够对其质量进行具体推论(例如,有95%的几率是特征重要性在给定范围内),但也是高度一致和稳定的。我们执行了一个详细的理论分析,可以利用上述不确定性来估计对样品的扰动有多少,以及如何进行更快的收敛。这项工作首次尝试在一次拍摄中通过流行的解释方法解决几个关键问题,从而以计算上有效的方式产生一致,稳定和可靠的解释。具有多个真实世界数据集和用户研究的实验评估表明,提出的框架的功效。
translated by 谷歌翻译
In the last years many accurate decision support systems have been constructed as black boxes, that is as systems that hide their internal logic to the user. This lack of explanation constitutes both a practical and an ethical issue. The literature reports many approaches aimed at overcoming this crucial weakness sometimes at the cost of scarifying accuracy for interpretability. The applications in which black box decision systems can be used are various, and each approach is typically developed to provide a solution for a specific problem and, as a consequence, delineating explicitly or implicitly its own definition of interpretability and explanation. The aim of this paper is to provide a classification of the main problems addressed in the literature with respect to the notion of explanation and the type of black box system. Given a problem definition, a black box type, and a desired explanation this survey should help the researcher to find the proposals more useful for his own work. The proposed classification of approaches to open black box models should also be useful for putting the many research open questions in perspective.
translated by 谷歌翻译
与此同时,在可解释的人工智能(XAI)的研究领域中,已经开发了各种术语,动机,方法和评估标准。随着XAI方法的数量大大增长,研究人员以及从业者以及从业者需要一种方法:掌握主题的广度,比较方法,并根据特定用例所需的特征选择正确的XAI方法语境。在文献中,可以找到许多不同细节水平和深度水平的XAI方法分类。虽然他们经常具有不同的焦点,但它们也表现出许多重叠点。本文统一了这些努力,并提供了XAI方法的分类,这是关于目前研究中存在的概念的概念。在结构化文献分析和元研究中,我们识别并审查了XAI方法,指标和方法特征的50多个最引用和最新的调查。总结在调查调查中,我们将文章的术语和概念合并为统一的结构化分类。其中的单一概念总计超过50个不同的选择示例方法,我们相应地分类。分类学可以为初学者,研究人员和从业者提供服务作为XAI方法特征和方面的参考和广泛概述。因此,它提供了针对有针对性的,用例导向的基础和上下文敏感的未来研究。
translated by 谷歌翻译
黑匣子机器学习模型的解释性是至关重要的,特别是在部署在药物或自主汽车等关键应用中。现有方法为模型的预测产生了解释,然而,如何评估这种解释的质量和可靠性仍然是一个开放的问题。在本文中,我们进一步迈出了一步,以便为从业者提供工具来判断解释的可信度。为此,我们通过测量一系列多样化的替代替代解释者中的序数共识来产生对给定解释的不确定性的估计。虽然我们通过使用集合技术鼓励多样性,但我们提出并分析了指标,以通过评级方案汇总解释者集合中所包含的信息。我们通过关于最先进的卷积神经网络集合的实验来凭经验说明了这种方法的性质。此外,通过量身定制的可视化,我们展示了不确定性估计为用户提供了超出标准代理解释者引起的具体可操作见解的具体示例。
translated by 谷歌翻译
了解黑盒机器学习模型对于广泛采用至关重要。学习全球可解释的模型是一种方法,但是与他们一起实现高性能是具有挑战性的。另一种方法是使用本地解释的模型来解释个人预测。对于本地可解释的建模,已经提出了各种方法,并且确实使用了常用,但是它们的保真度低,即它们的解释不能很好地近似预测。在本文中,我们的目标是推动高保真性的本地解释建模。我们提出了一个新颖的框架,使用实例的亚采样(LIMIS)进行局部解释的建模。 Limis利用策略梯度选择少数实例,并使用这些选定的实例将黑框模型提炼成一个低容量的本地解释模型。培训是通过衡量本地可解释模型的保真度直接获得的奖励来指导的。我们在多个表格数据集上显示了LIMIS接近匹配黑框模型的预测准确性,从忠诚度和预测准确性方面大大优于最先进的本地解释模型。
translated by 谷歌翻译
最近,使用模型无法轻易解释,最常见的神经网络的模型最近解决了计算机视觉中的许多问题。替代解释器是一种流行的事后解释性方法,可以进一步了解模型如何到达特定预测。通过训练一个简单,更容易解释的模型,以局部近似于非解剖系统的决策边界,我们可以估计输入特征在预测上的相对重要性。专注于图像,替代解释器,例如石灰,通过在可解释的域中采样来生成查询图像周围的本地邻域。但是,这些可解释的域传统上仅来自查询图像的固有特征,而不是考虑到该数据的流形,该数据的多种模型已在训练中暴露在训练中(或更普遍地,实际图像的多种形式) 。这导致对潜在低概率图像训练的次优替代物。我们通过对齐本地社区来解决此限制,即使无法访问此分配,代理人也接受了原始培训数据分配的培训。我们提出了两种这样做的方法,即(1)改变对局部邻域进行采样的方法,以及(2)使用感知指标传达自然图像分布的某些特性。
translated by 谷歌翻译
众所周知,端到端的神经NLP体系结构很难理解,这引起了近年来为解释性建模的许多努力。模型解释的基本原则是忠诚,即,解释应准确地代表模型预测背后的推理过程。这项调查首先讨论了忠诚的定义和评估及其对解释性的意义。然后,我们通过将方法分为五类来介绍忠实解释的最新进展:相似性方法,模型内部结构的分析,基于反向传播的方法,反事实干预和自我解释模型。每个类别将通过其代表性研究,优势和缺点来说明。最后,我们从它们的共同美德和局限性方面讨论了上述所有方法,并反思未来的工作方向忠实的解释性。对于有兴趣研究可解释性的研究人员,这项调查将为该领域提供可访问且全面的概述,为进一步探索提供基础。对于希望更好地了解自己的模型的用户,该调查将是一项介绍性手册,帮助选择最合适的解释方法。
translated by 谷歌翻译