This paper investigates the approximation properties of deep neural networks with piecewise-polynomial activation functions. We derive the required depth, width, and sparsity of a deep neural network to approximate any H\"{o}lder smooth function up to a given approximation error in H\"{o}lder norms in such a way that all weights of this neural network are bounded by $1$. The latter feature is essential to control generalization errors in many statistical and machine learning applications.
translated by 谷歌翻译
在这项工作中,我们对香草生成的对抗网络(GAN)的非渐近性质进行了彻底的研究。We derive theoretical guarantees for the density estimation with GANs under a proper choice of the deep neural networks classes representing generators and discriminators.特别是,我们证明了由此产生的估计会聚到真实密度$ \ mathsf {p} ^ * $以jensen-shannon(js)以$(\ log {n} / n)^ {2 \Beta /(2 \ beta + d)} $ why $ n $是样本大小和$ \ beta $ commentines $ \ mathsf {p} ^ * $的平滑度。据我们所知,这是使用Vanilla Gans的浓度估计的文献中的第一个结果,这些融合率比N ^ { - 1/2} $更快地在政权$ \ beta> D / 2 $中。此外,我们表明所获得的速率是考虑的密度类别的最低限度最佳(最高因子因子)。
translated by 谷歌翻译
在这项工作中,我们探讨了H +“旧常规功能的深度整流二次单位神经网络的近似能力,相对于统一标准。我们发现理论近似大量取决于神经网络中的所选激活函数。
translated by 谷歌翻译
我们研究了深层神经网络的表达能力,以在扩张的转移不变空间中近似功能,这些空间被广泛用于信号处理,图像处理,通信等。相对于神经网络的宽度和深度估算了近似误差界限。网络构建基于深神经网络的位提取和数据拟合能力。作为我们主要结果的应用,获得了经典函数空间(例如Sobolev空间和BESOV空间)的近似速率。我们还给出了$ l^p(1 \ le p \ le \ infty)$近似误差的下限,这表明我们的神经网络的构建是渐近的最佳选择,即最大程度地达到对数因素。
translated by 谷歌翻译
我们研究神经网络表达能力的基本限制。给定两组$ f $,$ g $的实值函数,我们首先证明了$ f $中的功能的一般下限,可以在$ l^p(\ mu)$ norm中通过$ g中的功能近似$,对于任何$ p \ geq 1 $和任何概率度量$ \ mu $。下限取决于$ f $的包装数,$ f $的范围以及$ g $的脂肪震动尺寸。然后,我们实例化了$ g $对应于分段的馈电神经网络的情况,并详细描述了两组$ f $:h {\“ o} lder balls和多变量单调函数。除了匹配(已知或新的)上限与日志因素外,我们的下限还阐明了$ l^p $ Norm或SUP Norm中近似之间的相似性或差异,解决了Devore等人的开放问题(2021年))。我们的证明策略与SUP Norm案例不同,并使用了Mendelson(2002)的关键概率结果。
translated by 谷歌翻译
直到最近,神经网络在机器学习中的应用几乎完全依赖于实际网络。然而,它最近观察到,该复合值的神经网络(CVNNS)在应用中表现出卓越的性能,其中输入自然复合值,例如MRI指纹识别。虽然现实价值网络的数学理论已经达到了一定程度的成熟度,但这远远不适用于复合网络。在本文中,我们通过提供近似美元的Compact Qualets上的Compact Value的神经网络上的Compact-valued神经网络,通过提供明确的定量误差界来分析复合网络的表达性。激活函数,由$ \ sigma(z)= \ mathrm {creu}(| z | - 1)\,\ mathrm {sgn}(z)$,它是实际使用的最受欢迎的复杂激活功能之一。我们表明,衍生的近似值率在Modroleu网络类中的最佳(最多为日志因子),其具有适度增长的重量。
translated by 谷歌翻译
本文开发了简单的前馈神经网络,实现了所有连续功能的通用近似性,具有固定的有限数量的神经元。这些神经网络很简单,因为它们的设计具有简单且可增加的连续激活功能$ \ Sigma $利用三角波函数和软片功能。我们证明了$ \ Sigma $ -Activated网络,宽度为36d $ 36d(2d + 1)$和11 $ 11 $可以在任意小错误中估计$ d $ -dimensioanl超级函数上的任何连续功能。因此,对于监督学习及其相关的回归问题,这些网络产生的假设空间,尺寸不小于36d(2d + 1)\ times 11 $的持续功能的空间。此外,由图像和信号分类引起的分类函数在$ \ sigma $ -activated网络生成的假设空间中,宽度为36d(2d + 1)$和12 $ 12 $,当存在$ \的成对不相交的界限子集时mathbb {r} ^ d $,使得同一类的样本位于同一子集中。
translated by 谷歌翻译
Consider the multivariate nonparametric regression model. It is shown that estimators based on sparsely connected deep neural networks with ReLU activation function and properly chosen network architecture achieve the minimax rates of convergence (up to log nfactors) under a general composition assumption on the regression function. The framework includes many well-studied structural constraints such as (generalized) additive models. While there is a lot of flexibility in the network architecture, the tuning parameter is the sparsity of the network. Specifically, we consider large networks with number of potential network parameters exceeding the sample size. The analysis gives some insights into why multilayer feedforward neural networks perform well in practice. Interestingly, for ReLU activation function the depth (number of layers) of the neural network architectures plays an important role and our theory suggests that for nonparametric regression, scaling the network depth with the sample size is natural. It is also shown that under the composition assumption wavelet estimators can only achieve suboptimal rates.
translated by 谷歌翻译
这项调查的目的是介绍对深神经网络的近似特性的解释性回顾。具体而言,我们旨在了解深神经网络如何以及为什么要优于其他经典线性和非线性近似方法。这项调查包括三章。在第1章中,我们回顾了深层网络及其组成非线性结构的关键思想和概念。我们通过在解决回归和分类问题时将其作为优化问题来形式化神经网络问题。我们简要讨论用于解决优化问题的随机梯度下降算法以及用于解决优化问题的后传播公式,并解决了与神经网络性能相关的一些问题,包括选择激活功能,成本功能,过度适应问题和正则化。在第2章中,我们将重点转移到神经网络的近似理论上。我们首先介绍多项式近似中的密度概念,尤其是研究实现连续函数的Stone-WeierStrass定理。然后,在线性近似的框架内,我们回顾了馈电网络的密度和收敛速率的一些经典结果,然后在近似Sobolev函数中进行有关深网络复杂性的最新发展。在第3章中,利用非线性近似理论,我们进一步详细介绍了深度和近似网络与其他经典非线性近似方法相比的近似优势。
translated by 谷歌翻译
We study expressive power of shallow and deep neural networks with piece-wise linear activation functions. We establish new rigorous upper and lower bounds for the network complexity in the setting of approximations in Sobolev spaces. In particular, we prove that deep ReLU networks more efficiently approximate smooth functions than shallow networks. In the case of approximations of 1D Lipschitz functions we describe adaptive depth-6 network architectures more efficient than the standard shallow architecture.
translated by 谷歌翻译
我们为特殊神经网络架构,称为运营商复发性神经网络的理论分析,用于近似非线性函数,其输入是线性运算符。这些功能通常在解决方案算法中出现用于逆边值问题的问题。传统的神经网络将输入数据视为向量,因此它们没有有效地捕获与对应于这种逆问题中的数据的线性运算符相关联的乘法结构。因此,我们介绍一个类似标准的神经网络架构的新系列,但是输入数据在向量上乘法作用。由较小的算子出现在边界控制中的紧凑型操作员和波动方程的反边值问题分析,我们在网络中的选择权重矩阵中促进结构和稀疏性。在描述此架构后,我们研究其表示属性以及其近似属性。我们还表明,可以引入明确的正则化,其可以从所述逆问题的数学分析导出,并导致概括属性上的某些保证。我们观察到重量矩阵的稀疏性改善了概括估计。最后,我们讨论如何将运营商复发网络视为深度学习模拟,以确定诸如用于从边界测量的声波方程中重建所未知的WAVESTED的边界控制的算法算法。
translated by 谷歌翻译
This paper investigates the stability of deep ReLU neural networks for nonparametric regression under the assumption that the noise has only a finite p-th moment. We unveil how the optimal rate of convergence depends on p, the degree of smoothness and the intrinsic dimension in a class of nonparametric regression functions with hierarchical composition structure when both the adaptive Huber loss and deep ReLU neural networks are used. This optimal rate of convergence cannot be obtained by the ordinary least squares but can be achieved by the Huber loss with a properly chosen parameter that adapts to the sample size, smoothness, and moment parameters. A concentration inequality for the adaptive Huber ReLU neural network estimators with allowable optimization errors is also derived. To establish a matching lower bound within the class of neural network estimators using the Huber loss, we employ a different strategy from the traditional route: constructing a deep ReLU network estimator that has a better empirical loss than the true function and the difference between these two functions furnishes a low bound. This step is related to the Huberization bias, yet more critically to the approximability of deep ReLU networks. As a result, we also contribute some new results on the approximation theory of deep ReLU neural networks.
translated by 谷歌翻译
我们提出了一种惩罚的非参数方法,以使用整流器二次单元(REEND)激活了深层神经网络,以估计不可分割的模型中的分位数回归过程(QRP),并引入了新的惩罚函数,以实施对瓦解回归曲线的非交叉。我们为估计的QRP建立了非反应过量的风险界限,并在轻度平滑度和规律性条件下得出估计的QRP的平均综合平方误差。为了建立这些非反应风险和估计误差范围,我们还使用$ s> 0 $及其衍生物及其衍生物使用所需的激活的神经网络开发了一个新的错误,用于近似$ c^s $平滑功能。这是必需网络的新近似结果,并且具有独立的兴趣,并且可能在其他问题中有用。我们的数值实验表明,所提出的方法具有竞争性或胜过两种现有方法,包括使用再现核和随机森林的方法,用于非参数分位数回归。
translated by 谷歌翻译
我们因与Relu神经网络的参数双曲标量保护定律的近似值所产生的误差得出了严格的界限。我们表明,通过克服维度诅咒的relu神经网络,可以使近似误差尽可能小。此外,我们在训练误差,训练样本数量和神经网络大小方面提供了明确的上限。理论结果通过数值实验说明。
translated by 谷歌翻译
在本文中,我们用relu,正弦和$ 2^x $构建神经网络作为激活功能。对于$ [0,1]^d $定义的一般连续$ f $,带有连续模量$ \ omega_f(\ cdot)$,我们构造了Relu-sine- $ 2^x $网络,这些网络享受近似值$ \ MATHCAL {o }(\ omega_f(\ sqrt {d})\ cdot2^{ - m}+\ omega_ {f} \ in \ Mathbb {n}^{+} $表示与网络宽度相关的超参数。结果,我们可以构建Relu-Sine- $ 2^x $网络,其深度为$ 5 $和宽度$ \ max \ left \ weft \ {\ left \ lceil2d^{3/2} \ left(\ frac {3 \ mu}) {\ epsilon} \ right)^{1/{\ alpha}} \ right \ rceil,2 \ left \ lceil \ log_2 \ frac {3 \ mu d^{\ alpha/2}} \ rceil+2 \ right \} $ tht \ Mathcal {h} _ {\ mu}^{\ alpha}([0,1]^d)$近似$ f \以$ l^p $ norm $ p \在[1,\ infty)$中的测量,其中$ \ mathcal {h} _ {\ mu}^{\ alpha}(\ alpha}([0,1]^d)$表示H \“ $ [0,1]^d $定义的旧连续函数类,带有订单$ \ alpha \ in(0,1] $和常数$ \ mu> 0 $。因此,relu-sine- $ 2^x $网络克服了$ \ Mathcal {h} _ {\ mu}^{\ alpha}([0,1]^d)$。除了其晚餐表达能力外,由relu-sine- $ 2实施的功能,也克服了维度的诅咒。 ^x $网络是(广义)可区分的,使我们能够将SGD应用于训练。
translated by 谷歌翻译
过度参数化的神经网络在复杂数据上具有很大的代表能力,更重要的是产生足够平滑的输出,这对于它们的概括和稳健性至关重要。大多数现有函数近似理论表明,使用足够多的参数,神经网络可以很好地近似于功能值的某些类别的函数。然而,神经网络本身可能是高度平滑的。为了弥合这一差距,我们以卷积残留网络(Rescresnets)为例,并证明大型响应不仅可以在功能值方面近似目标函数,而且还可以表现出足够的一阶平滑度。此外,我们将理论扩展到在低维歧管上支持的近似功能。我们的理论部分证明了在实践中使用深层网络的好处。提供了关于对抗性鲁棒图像分类的数值实验,以支持我们的理论。
translated by 谷歌翻译
我们研究了使用前馈神经网络实施其支持集的同时近似紧凑型积分功能的问题。我们的第一个主要结果将这个“结构化”近似问题转录为普遍性问题。我们通过在空间上构建通常的拓扑结构来做到这一点,$ l^1 _ {\ propatatorName {loc}}(\ m athbb {r}^d,\ m athbb {r}^d)locally-intellable-intellable-intellable-intellable-intellable-in紧凑型函数只能通过具有匹配的离散支持的函数来近似于$ l^1 $ norm。我们建立了Relu Feedforwward网络的普遍性,并在此精致拓扑结构中具有双线性池层。因此,我们发现具有双线性池的Relu FeedForward网络可以在实施其离散支持的同时近似紧凑的功能。我们在紧凑型Lipschitz函数的致密亚类中得出了通用近似定理的定量均匀版本。该定量结果表达了通过目标函数的规律性,其基本支持的度量和直径以及输入和输出空间的尺寸来构建此relu网络所需的双线性池层层的深度,宽度和数量。相反,我们表明多项式回归器和分析前馈网络在该空间中并非通用。
translated by 谷歌翻译
生成的对抗网络(GAN)在无监督学习方面取得了巨大的成功。尽管具有显着的经验表现,但关于gan的统计特性的理论研究有限。本文提供了gan的近似值和统计保证,以估算具有H \“ {o} lder空间密度的数据分布。我们的主要结果表明,如果正确选择了生成器和鉴别器网络架构,则gan是一致的估计器在较强的差异指标下的数据分布(例如Wasserstein-1距离。 ,这不受环境维度的诅咒。我们对低维数据的分析基于具有Lipschitz连续性保证的神经网络的通用近似理论,这可能具有独立的兴趣。
translated by 谷歌翻译
Many applications, such as system identification, classification of time series, direct and inverse problems in partial differential equations, and uncertainty quantification lead to the question of approximation of a non-linear operator between metric spaces $\mathfrak{X}$ and $\mathfrak{Y}$. We study the problem of determining the degree of approximation of such operators on a compact subset $K_\mathfrak{X}\subset \mathfrak{X}$ using a finite amount of information. If $\mathcal{F}: K_\mathfrak{X}\to K_\mathfrak{Y}$, a well established strategy to approximate $\mathcal{F}(F)$ for some $F\in K_\mathfrak{X}$ is to encode $F$ (respectively, $\mathcal{F}(F)$) in terms of a finite number $d$ (repectively $m$) of real numbers. Together with appropriate reconstruction algorithms (decoders), the problem reduces to the approximation of $m$ functions on a compact subset of a high dimensional Euclidean space $\mathbb{R}^d$, equivalently, the unit sphere $\mathbb{S}^d$ embedded in $\mathbb{R}^{d+1}$. The problem is challenging because $d$, $m$, as well as the complexity of the approximation on $\mathbb{S}^d$ are all large, and it is necessary to estimate the accuracy keeping track of the inter-dependence of all the approximations involved. In this paper, we establish constructive methods to do this efficiently; i.e., with the constants involved in the estimates on the approximation on $\mathbb{S}^d$ being $\mathcal{O}(d^{1/6})$. We study different smoothness classes for the operators, and also propose a method for approximation of $\mathcal{F}(F)$ using only information in a small neighborhood of $F$, resulting in an effective reduction in the number of parameters involved.
translated by 谷歌翻译
对于人造深神经网络,我们证明了分析函数的表达率$ f:\ mathbb {r} ^ d \ to \ mathbb {r} $中的$ l ^ 2(\ mathbb {r} ^ d,\ gamma_d )$ down $ d \ in {\ mathbb {n}} \ cup \ {\ idty \} $。 $ \ gamma_d $ denot $ \ mathbb {r} ^ d $的高斯产品概率测量。我们特别考虑relu和relu $ {} ^ $ y ^ $ yrucations for Integer $ k \ geq 2 $。对于$ d \ in \ mathbb {n} $,我们显示了$ l ^ 2(\ mathbb {r} ^ d,\ gamma_d)$的指数融合率。在$ d = \ infty $,在$ f:\ mathbb {r} ^ {\ mathbb {r}} \ to \ mathbb {r} $的适当平滑和稀疏假设下,用$ \ gamma_ \ idty $表示$ \ mathbb {r} ^ {\ mathbb {n}} $的无限(高斯)产品测量值,我们证明了$ l ^ 2(\ mathbb {r} ^ {\ mathbb { n}},\ gamma_ \ idty)$。该速率仅取决于(分析延续)的量化全阵列(分析延续)地图$ f $到$ \ mathbb {c} ^ d $中的条带产品。作为应用程序,我们将深度Relu-NNS的表达率界限进行了椭圆PDE的响应曲面与Log-Gaussian随机场输入。
translated by 谷歌翻译