深度异常检测旨在将异常与具有高质量示例的正常样本分开。预磨料的特点带来了有效的代表和有前途的异常检测性能。但是,通过单级培训数据,调整佩带的功能是棘手的问题。具体而言,具有全局目标的现有优化目标通常导致图案崩溃,即所有输入都映射到同一个。在本文中,我们提出了一种新颖的适应框架,包括简单的线性变换和自我关注。这种适应应用于特定输入,并且其普定的特征空间中的正常样本的最接近的表示和相似的单级语义特征之间的内部关系。此外,基于此类框架,我们提出了有效的约束项来避免学习琐碎的解决方案。我们的简单自适应投影预呈现特征(SAP2)产生了一种新的异常检测标准,其更准确和坚固地崩溃。我们的方法在语义异常检测和感官异常检测基准上实现了最先进的异常检测性能,包括CIFAR-100数据集的96.5%Auroc,CiFar-10数据集97.0%Auroc和MVTEC数据集上的88.1%Auroc。
translated by 谷歌翻译
基于可视异常检测的内存模块的重建方法试图缩小正常样品的重建误差,同时将其放大为异常样品。不幸的是,现有的内存模块不完全适用于异常检测任务,并且异常样品的重建误差仍然很小。为此,这项工作提出了一种新的无监督视觉异常检测方法,以共同学习有效的正常特征并消除不利的重建错误。具体而言,提出了一个新颖的分区内存库(PMB)模块,以有效地学习和存储具有正常样本语义完整性的详细特征。它开发了一种新的分区机制和一种独特的查询生成方法,以保留上下文信息,然后提高内存模块的学习能力。替代探索了拟议的PMB和跳过连接,以使异常样品的重建更糟。为了获得更精确的异常定位结果并解决了累积重建误差的问题,提出了一个新型的直方图误差估计模块,以通过差异图像的直方图自适应地消除了不利的误差。它可以改善异常本地化性能而不会增加成本。为了评估所提出的异常检测和定位方法的有效性,在三个广泛使用的异常检测数据集上进行了广泛的实验。与基于内存模块的最新方法相比,提出的方法的令人鼓舞的性能证明了其优越性。
translated by 谷歌翻译
异常检测方法识别偏离数据集的正常行为的样本。它通常用于训练集,其中包含来自多个标记类或单个未标记的类的普通数据。当前方法面对培训数据时争取多个类但没有标签。在这项工作中,我们首先发现自我监督的图像聚类方法学习的分类器为未标记的多级数据集上的异常检测提供了强大的基线。也许令人惊讶的是,我们发现初始化具有预先训练功能的聚类方法并不能改善其自我监督的对应物。这是由于灾难性遗忘的现象。相反,我们建议了两级方法。我们使用自我监督方法群集图像并为每个图像获取群集标签。我们使用群集标签作为“伪监督”,用于分销(OOD)方法。具体而言,我们通过群集标签对图像进行分类的任务进行预训练功能。我们提供了我们对方法的广泛分析,并展示了我们两级方法的必要性。我们评估符合最先进的自我监督和预用方法,并表现出卓越的性能。
translated by 谷歌翻译
与行业4.0的发展相一致,越来越多的关注被表面缺陷检测领域所吸引。提高效率并节省劳动力成本已稳步成为行业领域引起人们关注的问题,近年来,基于深度学习的算法比传统的视力检查方法更好。尽管现有的基于深度学习的算法偏向于监督学习,但这不仅需要大量标记的数据和大量的劳动力,而且还效率低下,并且有一定的局限性。相比之下,最近的研究表明,无监督的学习在解决视觉工业异常检测的高于缺点方面具有巨大的潜力。在这项调查中,我们总结了当前的挑战,并详细概述了最近提出的针对视觉工业异常检测的无监督算法,涵盖了五个类别,其创新点和框架详细描述了。同时,提供了包含表面图像样本的公开可用数据集的信息。通过比较不同类别的方法,总结了异常检测算法的优点和缺点。预计将协助研究社区和行业发展更广泛,更跨域的观点。
translated by 谷歌翻译
由于缺乏异常样品,因此仅具有正常样本的先验知识的异常检测才吸引更多的注意力。现有的基于CNN的像素重建方法遇到了两个问题。首先,重建源和目标是包含无法区分的语义信息的原始像素值。其次,CNN倾向于很好地重建正常样品和异常情况,使它们仍然很难区分。在本文中,我们提出异常检测变压器(ADTR)将变压器应用于重建预训练的特征。预训练的功能包含可区分的语义信息。同样,采用变压器限制以很好地重构异常,因此一旦重建失败,就可以轻松检测到异常。此外,我们提出了新的损失函数,使我们的方法与正常样本的情况以及具有图像级和像素级标记为异常的异常情况兼容。通过添加简单的合成或外部无关异常,可以进一步提高性能。广泛的实验是在包括MVTEC-AD和CIFAR-10在内的异常检测数据集上进行的。与所有基线相比,我们的方法取得了卓越的性能。
translated by 谷歌翻译
Deep anomaly detection methods learn representations that separate between normal and anomalous images. Although self-supervised representation learning is commonly used, small dataset sizes limit its effectiveness. It was previously shown that utilizing external, generic datasets (e.g. ImageNet classification) can significantly improve anomaly detection performance. One approach is outlier exposure, which fails when the external datasets do not resemble the anomalies. We take the approach of transferring representations pre-trained on external datasets for anomaly detection. Anomaly detection performance can be significantly improved by fine-tuning the pre-trained representations on the normal training images. In this paper, we first demonstrate and analyze that contrastive learning, the most popular self-supervised learning paradigm cannot be naively applied to pre-trained features. The reason is that pre-trained feature initialization causes poor conditioning for standard contrastive objectives, resulting in bad optimization dynamics. Based on our analysis, we provide a modified contrastive objective, the Mean-Shifted Contrastive Loss. Our method is highly effective and achieves a new state-of-the-art anomaly detection performance including $98.6\%$ ROC-AUC on the CIFAR-10 dataset.
translated by 谷歌翻译
Anomaly detection and localization are widely used in industrial manufacturing for its efficiency and effectiveness. Anomalies are rare and hard to collect and supervised models easily over-fit to these seen anomalies with a handful of abnormal samples, producing unsatisfactory performance. On the other hand, anomalies are typically subtle, hard to discern, and of various appearance, making it difficult to detect anomalies and let alone locate anomalous regions. To address these issues, we propose a framework called Prototypical Residual Network (PRN), which learns feature residuals of varying scales and sizes between anomalous and normal patterns to accurately reconstruct the segmentation maps of anomalous regions. PRN mainly consists of two parts: multi-scale prototypes that explicitly represent the residual features of anomalies to normal patterns; a multisize self-attention mechanism that enables variable-sized anomalous feature learning. Besides, we present a variety of anomaly generation strategies that consider both seen and unseen appearance variance to enlarge and diversify anomalies. Extensive experiments on the challenging and widely used MVTec AD benchmark show that PRN outperforms current state-of-the-art unsupervised and supervised methods. We further report SOTA results on three additional datasets to demonstrate the effectiveness and generalizability of PRN.
translated by 谷歌翻译
当前,借助监督学习方法,基于深度学习的视觉检查已取得了非常成功的成功。但是,在实际的工业场景中,缺陷样本的稀缺性,注释的成本以及缺乏缺陷的先验知识可能会使基于监督的方法无效。近年来,无监督的异常定位算法已在工业检查任务中广泛使用。本文旨在通过深入学习在工业图像中无视无视的异常定位中的最新成就来帮助该领域的研究人员。该调查回顾了120多个重要出版物,其中涵盖了异常定位的各个方面,主要涵盖了所审查方法的各种概念,挑战,分类法,基准数据集和定量性能比较。在审查迄今为止的成就时,本文提供了一些未来研究方向的详细预测和分析。这篇综述为对工业异常本地化感兴趣的研究人员提供了详细的技术信息,并希望将其应用于其他领域的异常本质。
translated by 谷歌翻译
在工业应用中,无监督的异常检测是一项艰巨的任务,因为收集足够的异常样品是不切实际的。在本文中,通过共同探索锻造异常样品的有效生成方法和正常样品特征作为分割异常检测的指导信息,提出了一种新颖的自我监督指导性分割框架(SGSF)。具体而言,为确保生成的锻造异常样品有利于模型训练,提出了显着性增强模块(SAM)。 Sam引入了显着图来产生显着性Perlin噪声图,并制定了一种自适应分割策略,以在显着区域产生不规则的掩模。然后,将口罩用于生成伪造的异常样品作为训练的负样本。不幸的是,锻造和真实异常样品之间的分布差距使得基于锻造样品训练的模型难以有效定位真实异常。为此,提出了自我监督的指导网络(SGN)。它利用自我监督的模块提取无噪声的功能,并包含正常的语义信息作为分割模块的先验知识。分割模块具有正常模式段的知识,这些片段与指导特征不同。为了评估SGSF对异常检测的有效性,在三个异常检测数据集上进行了广泛的实验。实验结果表明,SGSF达到了最新的异常检测结果。
translated by 谷歌翻译
The unsupervised anomaly localization task faces the challenge of missing anomaly sample training, detecting multiple types of anomalies, and dealing with the proportion of the area of multiple anomalies. A separate teacher-student feature imitation network structure and a multi-scale processing strategy combining an image and feature pyramid are proposed to solve these problems. A network module importance search method based on gradient descent optimization is proposed to simplify the network structure. The experimental results show that the proposed algorithm performs better than the feature modeling anomaly localization method on the real industrial product detection dataset in the same period. The multi-scale strategy can effectively improve the effect compared with the benchmark method.
translated by 谷歌翻译
尽管无监督的异常检测迅速发展,但现有的方法仍需要训练不同对象的单独模型。在这项工作中,我们介绍了完成具有统一框架的多个类别的异常检测。在如此具有挑战性的环境下,流行的重建网络可能属于“相同的快捷方式”,在这种捷径中,正常样本和异常样本都可以很好地恢复,因此无法发现异常值。为了解决这一障碍,我们取得了三个改进。首先,我们重新审视完全连接的层,卷积层以及注意力层的配方,并确认查询嵌入(即注意层内)在防止网络学习快捷键方面的重要作用。因此,我们提出了一个层的查询解码器,以帮助建模多级分布。其次,我们采用一个邻居掩盖的注意模块,以进一步避免从输入功能到重建的输出功能的信息泄漏。第三,我们提出了一种功能抖动策略,即使使用嘈杂的输入,也敦促模型恢复正确的消息。我们在MVTEC-AD和CIFAR-10数据集上评估了我们的算法,在该数据集中,我们通过足够大的利润率超过了最先进的替代方案。例如,当在MVTEC-AD中学习15个类别的统一模型时,我们在异常检测的任务(从88.1%到96.5%)和异常定位(从89.5%到96.8%)上超过了第二个竞争者。代码将公开可用。
translated by 谷歌翻译
Anomaly detection and localization are essential in many areas, where collecting enough anomalous samples for training is almost impossible. To overcome this difficulty, many existing methods use a pre-trained network to encode input images and non-parametric modeling to estimate the encoded feature distribution. In the modeling process, however, they overlook that position and neighborhood information affect the distribution of normal features. To use the information, in this paper, the normal distribution is estimated with conditional probability given neighborhood features, which is modeled with a multi-layer perceptron network. At the same time, positional information can be used by building a histogram of representative features at each position. While existing methods simply resize the anomaly map into the resolution of an input image, the proposed method uses an additional refine network that is trained from synthetic anomaly images to perform better interpolation considering the shape and edge of the input image. For the popular industrial dataset, MVTec AD benchmark, the experimental results show \textbf{99.52\%} and \textbf{98.91\%} AUROC scores in anomaly detection and localization, which is state-of-the-art performance.
translated by 谷歌翻译
Aiming at the problem that the current video anomaly detection cannot fully use the temporal information and ignore the diversity of normal behavior, an anomaly detection method is proposed to integrate the spatiotemporal information of pedestrians. Based on the convolutional autoencoder, the input frame is compressed and restored through the encoder and decoder. Anomaly detection is realized according to the difference between the output frame and the true value. In order to strengthen the characteristic information connection between continuous video frames, the residual temporal shift module and the residual channel attention module are introduced to improve the modeling ability of the network on temporal information and channel information, respectively. Due to the excessive generalization of convolutional neural networks, in the memory enhancement modules, the hopping connections of each codec layer are added to limit autoencoders' ability to represent abnormal frames too vigorously and improve the anomaly detection accuracy of the network. In addition, the objective function is modified by a feature discretization loss, which effectively distinguishes different normal behavior patterns. The experimental results on the CUHK Avenue and ShanghaiTech datasets show that the proposed method is superior to the current mainstream video anomaly detection methods while meeting the real-time requirements.
translated by 谷歌翻译
无监督异常检测的本质是学习正常样品的紧凑分布并将异常值视为测试异常。同时,现实世界中的异常通常在高分辨率图像中尤其是工业应用中微妙而细粒度。为此,我们为无监督的异常检测和定位提出了一个新的框架。我们的方法旨在通过粗到1的比对过程从正常图像中学习致密和紧凑的分布。粗对齐阶段标准化了对象在图像和特征级别中的像素位置。然后,细胞对齐阶段密集地最大程度地提高了批处理中所有相应位置之间特征的相似性。为了仅使用正常图像来促进学习,我们提出了一个新的借口任务,称为“对齐阶段”,称为非对抗性学习。非对比度学习提取鲁棒和区分正常图像表示,而无需对异常样本进行假设,因此它使我们的模型能够推广到各种异常场景。对MVTEC AD和Bentech AD的两个典型工业数据集进行了广泛的实验表明,我们的框架有效地检测各种现实世界缺陷,并在工业无监督的异常检测中实现了新的最新技术。
translated by 谷歌翻译
异常检测是一种既定的研究区,寻求识别出预定分布外的样本。异常检测管道由两个主要阶段组成:(1)特征提取和(2)正常评分分配。最近的论文使用预先训练的网络进行特征提取,实现最先进的结果。然而,使用预先训练的网络没有完全利用火车时间可用的正常样本。本文建议通过使用教师学生培训利用此信息。在我们的环境中,佩带的教师网络用于训练正常训练样本上的学生网络。由于学生网络仅在正常样本上培训,因此预计将偏离异常情况下的教师网络。这种差异可以用作预先训练的特征向量的互补表示。我们的方法 - 变换 - 利用预先训练的视觉变压器(VIV)来提取两个特征向量:预先接受的(不可知论者)功能和教师 - 学生(微调)功能。我们报告最先进的AUROC导致共同的单向设置,其中一个类被认为是正常的,其余的被认为是异常的,并且多模式设置,其中所有类别但是一个被认为是正常的,只有一个类被认为是异常的。代码可在https://github.com/matancohen1/transformaly获得。
translated by 谷歌翻译
长期以来,在行业中广泛使用异常定位。先前的研究集中在近似于正常特征的分布而不适应目标数据集的情况下。但是,由于异常定位应精确区分正常和异常特征,因此缺乏适应性可能会使异常特征的正态性高估。因此,我们提出了基于耦合的 - 希普尔特征适应(CFA),该功能适应(CFA)使用适合目标数据集的功能来完成复杂的异常定位。 CFA由(1)一个可学习的补丁描述符组成,该描述符可学习和嵌入面向目标的功能以及(2)可扩展的内存库,独立于目标数据集的大小。并且,CFA采用转移学习以增加正常特征密度,因此可以通过将贴片描述符和记忆库应用于预训练的CNN来清楚地区分异常特征。所提出的方法在定量和质量上优于先前的方法。例如,它提供的AUROC分数为99.5%,在MVTEC AD基准的异常定位中提供98.5%。此外,本文指出了预训练的CNN的偏置特征的负面影响,并强调适应目标数据集的重要性。该代码可在https://github.com/sungwool/cfa_for_anomaly_localization上公开获得。
translated by 谷歌翻译
无监督的异常检测和定位对于采集和标记足够的异常数据时对实际应用至关重要。基于现有的基于表示的方法提取具有深度卷积神经网络的正常图像特征,并通过非参数分布估计方法表征相应的分布。通过测量测试图像的特征与估计分布之间的距离来计算异常分数。然而,当前方法无法将图像特征与易解基本分布有效地映射到局部和全局特征之间的关系,这些功能与识别异常很重要。为此,我们提出了使用2D标准化流动实现的FastFlow,并将其用作概率分布估计器。我们的FastFlow可用作具有任意深度特征提取器的插入式模块,如Reset和Vision变压器,用于无监督的异常检测和定位。在训练阶段,FastFlow学习将输入视觉特征转换为贸易分布并获得识别推理阶段中的异常的可能性。 MVTEC AD数据集的广泛实验结果显示,在具有各种骨干网络的准确性和推理效率方面,FastFlow在先前的最先进的方法上超越了先前的方法。我们的方法通过高推理效率达到异常检测中的99.4%AUC。
translated by 谷歌翻译
在表面缺陷检测中,由于阳性和负样品数量的极度失衡,基于阳性样本的异常检测方法已受到越来越多的关注。具体而言,基于重建的方法是最受欢迎的方法。但是,退出的方法要么难以修复异常的前景或重建清晰的背景。因此,我们提出了一个清晰的内存调制自动编码器。首先,我们提出了一个新颖的清晰内存调节模块,该模块将编码和内存编码结合在一起,以忘记和输入的方式,从而修复异常的前景和保存透明背景。其次,提出了一般人工异常产生算法来模拟尽可能逼真和特征富含特征的异常。最后,我们提出了一种新型的多量表特征残差检测方法,用于缺陷分割,这使缺陷位置更加准确。 CMA-AE使用五个基准数据集上的11种最先进方法进行比较实验,显示F1量的平均平均改善平均为18.6%。
translated by 谷歌翻译
异常检测和本地化是计算机视觉中的重要问题。最近,卷积神经网络(CNN)已被用于视觉检查。特别是,异常样本的稀缺性增加了这项任务的难度,并且无监督的基于倾斜的方法都会引起注意力。我们专注于学生 - 教师特征金字塔匹配(STPM),可以从少量时期的普通图像训练。在这里,我们提出了一种强大的方法,可以补偿STPM的缺点。提出的方法包括两个学生和两位教师,即一对学生 - 教师网络与STPM相同。其他学生 - 教师网络具有重建普通产品的功能的作用。通过从异常图像重建正常产品的特征,可以通过在它们之间的差异来检测具有更高精度的异常。新的学生 - 教师网络使用原始STPM的注意力模块和不同的教师网络。注意机制以成功重建输入图像中的普通区域。不同的教师网络可以防止与原始STPM相同的区域。从两个学生 - 教师网络获得的六个异常地图用于计算最终的异常地图。用于重建的学生教师网络具有与原始STPM相比的像素级别和图像级别的改进AUC分数。
translated by 谷歌翻译
无监督的异常检测旨在通过在正常数据上训练来建立模型以有效地检测看不见的异常。尽管以前的基于重建的方法取得了富有成效的进展,但由于两个危急挑战,他们的泛化能力受到限制。首先,训练数据集仅包含正常模式,这限制了模型泛化能力。其次,现有模型学到的特征表示通常缺乏代表性,妨碍了保持正常模式的多样性的能力。在本文中,我们提出了一种称为自适应存储器网络的新方法,具有自我监督的学习(AMSL)来解决这些挑战,并提高无监督异常检测中的泛化能力。基于卷积的AutoEncoder结构,AMSL包含一个自我监督的学习模块,以学习一般正常模式和自适应内存融合模块来学习丰富的特征表示。四个公共多变量时间序列数据集的实验表明,与其他最先进的方法相比,AMSL显着提高了性能。具体而言,在具有9亿个样本的最大帽睡眠阶段检测数据集上,AMSL以精度和F1分数\ TextBF {4} \%+优于第二个最佳基线。除了增强的泛化能力之外,AMSL还针对输入噪声更加强大。
translated by 谷歌翻译