最近对具有正式隐私保证的分布式计算的研究,例如联合学习的差异私有(DP),利用每回合中客户的随机抽样(通过亚采样进行的隐私放大)来达到令人满意的隐私水平。然而,实现这一目标需要强大的假设,这些假设可能无法实践,包括对客户的精确和统一的亚采样,以及高度信任的聚合器来处理客户的数据。在本文中,我们探讨了一个更实用的协议,改组了办理登机手续,以解决上述问题。该协议依靠客户端做出独立和随机的决定来参与计算,释放服务器发射的亚采样要求,并启用客户端辍学的强大建模。此外,采用了称为洗牌模型的较弱的信任模型,而不是使用受信任的聚合器。为此,我们介绍了新工具来表征洗牌的r \'enyi差异隐私(RDP)。我们表明,我们的新技术在隐私保证中至少提高了三次,而在各种参数制度下使用近似DP的强大组成的人进行了三倍。此外,我们提供了一种数值方法来跟踪通用洗牌机构的隐私,包括具有高斯机制的分布式随机梯度下降(SGD)。据我们所知,这也是文献中分布式设置下本地/洗牌模型中高斯机制的首次评估,这可能具有独立的兴趣。
translated by 谷歌翻译
我们在差异隐私(DP)的洗牌模型中研究高斯机制。特别是,我们表征了该机制的r \'enyi差异隐私(RDP),表明它是形式:$$ \ epsilon(\ lambda)\ leq \ leq \ frac {1} {\ lambda-rambda-1} \ log \ left( \ frac { } \ binom {\ lambda!} {k_1,\ dotsc,k_n} e^{\ sum_ {\ sum_ {i = 1}^nk_i^2/2 \ sigma^2} \ right)由高斯RDP限制在上面,而不会改组。混乱的高斯RDP在组成多种DP机制方面是有利的,在该机制中,我们证明了其对散装模型的隐私保证的最新近似DP组成定理的改进。此外,我们将研究扩展到了次采样的洗牌机制和最近提出的洗牌机制,这些机制是针对分布式/联合学习的协议。最后,对这些机制进行了一项实证研究,以证明在分布式学习框架下采用洗牌高斯机制来保证严格的用户隐私的功效。
translated by 谷歌翻译
我们考虑对跨用户设备分发的私人数据培训模型。为了确保隐私,我们添加了设备的噪声并使用安全的聚合,以便仅向服务器揭示嘈杂的总和。我们提出了一个综合的端到端系统,该系统适当地离散数据并在执行安全聚合之前添加离散的高斯噪声。我们为离散高斯人的总和提供了新的隐私分析,并仔细分析了数据量化和模块化求和算术的影响。我们的理论保证突出了沟通,隐私和准确性之间的复杂张力。我们广泛的实验结果表明,我们的解决方案基本上能够将准确性与中央差分隐私相匹配,而每个值的精度少于16位。
translated by 谷歌翻译
隐私和沟通效率是联邦神经网络培训中的重要挑战,并将它们组合仍然是一个公开的问题。在这项工作中,我们开发了一种统一高度压缩通信和差异隐私(DP)的方法。我们引入基于相对熵编码(REC)到联合设置的压缩技术。通过对REC进行微小的修改,我们获得了一种可怕的私立学习算法,DP-REC,并展示了如何计算其隐私保证。我们的实验表明,DP-REC大大降低了通信成本,同时提供与最先进的隐私保证。
translated by 谷歌翻译
联合数据分析是一个用于分布式数据分析的框架,其中服务器从一组分布式的低型带宽用户设备中编译了嘈杂的响应,以估算总统计信息。该框架中的两个主要挑战是隐私,因为用户数据通常很敏感,并且压缩,因为用户设备的网络带宽较低。先前的工作通过将标准压缩算法与已知的隐私机制相结合,从而分别解决了这些挑战。在这项工作中,我们对问题进行了整体研究,并设计了一个适合任何给定沟通预算的隐私感知压缩机制。我们首先提出了一种在某些条件下传输具有最佳方差的单个实数的机制。然后,我们展示如何将其扩展到位置隐私用例以及向量的指标差异隐私,以应用于联合学习。我们的实验表明,在许多设置中,我们的机制可以导致更好的实用性与压缩权衡。
translated by 谷歌翻译
Deep neural networks have strong capabilities of memorizing the underlying training data, which can be a serious privacy concern. An effective solution to this problem is to train models with differential privacy, which provides rigorous privacy guarantees by injecting random noise to the gradients. This paper focuses on the scenario where sensitive data are distributed among multiple participants, who jointly train a model through federated learning (FL), using both secure multiparty computation (MPC) to ensure the confidentiality of each gradient update, and differential privacy to avoid data leakage in the resulting model. A major challenge in this setting is that common mechanisms for enforcing DP in deep learning, which inject real-valued noise, are fundamentally incompatible with MPC, which exchanges finite-field integers among the participants. Consequently, most existing DP mechanisms require rather high noise levels, leading to poor model utility. Motivated by this, we propose Skellam mixture mechanism (SMM), an approach to enforce DP on models built via FL. Compared to existing methods, SMM eliminates the assumption that the input gradients must be integer-valued, and, thus, reduces the amount of noise injected to preserve DP. Further, SMM allows tight privacy accounting due to the nice composition and sub-sampling properties of the Skellam distribution, which are key to accurate deep learning with DP. The theoretical analysis of SMM is highly non-trivial, especially considering (i) the complicated math of differentially private deep learning in general and (ii) the fact that the mixture of two Skellam distributions is rather complex, and to our knowledge, has not been studied in the DP literature. Extensive experiments on various practical settings demonstrate that SMM consistently and significantly outperforms existing solutions in terms of the utility of the resulting model.
translated by 谷歌翻译
We consider private federated learning (FL), where a server aggregates differentially private gradient updates from a large number of clients in order to train a machine learning model. The main challenge is balancing privacy with both classification accuracy of the learned model as well as the amount of communication between the clients and server. In this work, we build on a recently proposed method for communication-efficient private FL -- the MVU mechanism -- by introducing a new interpolation mechanism that can accommodate a more efficient privacy analysis. The result is the new Interpolated MVU mechanism that provides SOTA results on communication-efficient private FL on a variety of datasets.
translated by 谷歌翻译
联合学习(FL)提供了一个有效的范式,可以共同培训分布式用户的数据的全球模型。由于本地培训数据来自可能不值得信赖的不同用户,因此一些研究表明,FL容易受到中毒攻击的影响。同时,为了保护本地用户的隐私,FL始终以差异性私人方式(DPFL)进行培训。因此,在本文中,我们问:我们是否可以利用DPFL的先天隐私权来提供对中毒攻击的认证鲁棒性?我们可以进一步改善FL的隐私以改善这种认证吗?我们首先研究了FL的用户级和实例级别的隐私,并提出了新的机制以获得改进的实例级隐私。然后,我们提供两个鲁棒性认证标准:两级DPFL的认证预测和认证攻击成本。从理论上讲,我们证明了DPFL在有限数量的对抗用户或实例下的认证鲁棒性。从经验上讲,我们进行了广泛的实验,以在对不同数据集的一系列攻击下验证我们的理论。我们表明,具有更严格的隐私保证的DPFL总是在认证攻击成本方面提供更强的鲁棒性认证,但是在隐私保护和公用事业损失之间的适当平衡下,获得了最佳认证预测。
translated by 谷歌翻译
Federated learning seeks to address the issue of isolated data islands by making clients disclose only their local training models. However, it was demonstrated that private information could still be inferred by analyzing local model parameters, such as deep neural network model weights. Recently, differential privacy has been applied to federated learning to protect data privacy, but the noise added may degrade the learning performance much. Typically, in previous work, training parameters were clipped equally and noises were added uniformly. The heterogeneity and convergence of training parameters were simply not considered. In this paper, we propose a differentially private scheme for federated learning with adaptive noise (Adap DP-FL). Specifically, due to the gradient heterogeneity, we conduct adaptive gradient clipping for different clients and different rounds; due to the gradient convergence, we add decreasing noises accordingly. Extensive experiments on real-world datasets demonstrate that our Adap DP-FL outperforms previous methods significantly.
translated by 谷歌翻译
我们考虑使用迷你批量梯度进行差异隐私(DP)的培训模型。现有的最先进的差异私有随机梯度下降(DP-SGD)需要通过采样或洗机来获得最佳隐私/准确性/计算权衡的隐私放大。不幸的是,在重要的实际情况下,精确采样和洗牌的精确要求可能很难获得,特别是联邦学习(FL)。我们设计和分析跟随 - 正规的领导者(DP-FTRL)的DP变体,其比较(理论上和经验地)与放大的DP-SGD相比,同时允许更灵活的数据访问模式。DP-FTRL不使用任何形式的隐私放大。该代码可在https://github.com/google-Research/federated/tree/master/dp_ftrl和https://github.com/google-reesearch/dp-ftrl处获得。
translated by 谷歌翻译
Federated learning (FL), as a type of distributed machine learning, is capable of significantly preserving clients' private data from being exposed to adversaries. Nevertheless, private information can still be divulged by analyzing uploaded parameters from clients, e.g., weights trained in deep neural networks. In this paper, to effectively prevent information leakage, we propose a novel framework based on the concept of differential privacy (DP), in which artificial noises are added to parameters at the clients' side before aggregating, namely, noising before model aggregation FL (NbAFL). First, we prove that the NbAFL can satisfy DP under distinct protection levels by properly adapting different variances of artificial noises. Then we develop a theoretical convergence bound of the loss function of the trained FL model in the NbAFL. Specifically, the theoretical bound reveals the following three key properties: 1) There is a tradeoff between a convergence performance and privacy protection levels, i.e., better convergence performance leads to a lower protection level; 2) Given a fixed privacy protection level, increasing the number N of overall clients participating in FL can improve the convergence performance; and 3) There is an optimal number aggregation times (communication rounds) in terms of convergence performance for a given protection level. Furthermore, we propose a K-client random scheduling strategy, where K (1 ≤ K < N ) clients are randomly selected from the N overall clients to participate in each aggregation. We also develop a corresponding convergence bound for the loss function in this case and the K-client random scheduling strategy also retains the above three properties. Moreover, we find that there is an optimal K that achieves the best convergence performance at a
translated by 谷歌翻译
分析若干缔约方拥有的数据,同时在效用和隐私之间实现良好的权衡是联邦学习和分析的关键挑战。在这项工作中,我们介绍了一种新颖的差异隐私(LDP)的放松,自然地出现在完全分散的算法中,即,当参与者通过沿着网络图的边缘传播没有中央协调员的边缘交换信息时。我们呼叫网络DP的这种放松捕获了用户只有系统的本地视图。为了展示网络DP的相关性,我们研究了一个分散的计算模型,其中令牌在网络图上执行散步,并由接收它的方顺序更新。对于诸如实际求和,直方图计算和具有梯度下降的优化等任务,我们提出了在环和完整拓扑上的简单算法。我们证明,网络DP下我们算法的隐私式实用权折衷显着提高了LDP下可实现的内容(有时甚至与可信赖的策展人模型的效用)的可实现,首次显示正式隐私收益可以从中获得完全分散。我们的实验说明了通过随机梯度下降的分散训练方法的改进效用。
translated by 谷歌翻译
联邦学习(FL)是大规模分布式学习的范例,它面临两个关键挑战:(i)从高度异构的用户数据和(ii)保护参与用户的隐私的高效培训。在这项工作中,我们提出了一种新颖的流动方法(DP-SCaffold)来通过将差异隐私(DP)约束结合到流行的脚手架算法中来解决这两个挑战。我们专注于有挑战性的环境,用户在没有任何可信中介的情况下与“诚实但奇怪的”服务器沟通,这需要确保隐私不仅可以访问最终模型的第三方,而且还要对服务器观察所有用户通信。使用DP理论的高级结果,我们建立了凸面和非凸面目标算法的融合。我们的分析清楚地突出了数据异质性下的隐私式折衷,并且当局部更新的数量和异质性水平增长时,展示了在最先进的算法DP-Fedivg上的DP-Scaffold的优越性。我们的数值结果证实了我们的分析,并表明DP-Scaffold在实践中提供了重大的收益。
translated by 谷歌翻译
我们考虑在差异隐私(DP)的分布式信任模型下考虑标准的$ k $武装匪徒问题,该问题使得无需可信赖的服务器保证隐私。在此信任模型下,先前的工作主要集中在使用Shuffle协议实现隐私,在此过程中,在发送到中央服务器之前,将一批用户数据随机排列。通过牺牲额外的添加剂$ o \!\ left(\!\ frac {k \ log t \ sqrt {\ log(1/\ delta)}} } {\ epsilon} \!\ right)\!$在$ t $ - 步骤累积遗憾中成本。相比之下,在广泛使用的中央信托模型下实现更强($ \ epsilon,0 $)或纯dp保证的最佳隐私成本仅为$ \ theta \!\ left(\!\ frac {k \ log t t t } {\ epsilon} \!\ right)\!$,但是,需要一个受信任的服务器。在这项工作中,我们旨在获得分布式信托模型下的纯DP保证,同时牺牲比中央信托模型的遗憾。我们通过基于连续的ARM消除设计通用的匪徒算法来实现这一目标,在这种情况下,通过使用安全的计算协议确保使用等效的离散拉普拉斯噪声来损坏奖励来保证隐私。我们还表明,当使用Skellam噪声和安全协议实例化时,我们的算法可确保\ emph {r \'{e} nyi差异隐私} - 一个比分布式信任模型的近似dp更强的概念$ o \!\ left(\!\ frac {k \ sqrt {\ log t}}}} {\ epsilon} \!\ right)\!$。
translated by 谷歌翻译
为了在带宽洪泛环境(例如无线网络)中启用大规模的机器学习,最近在设计借助通信压缩的帮助下,最近在设计沟通效率的联合学习算法方面取得了重大进展。另一方面,隐私保护,尤其是在客户层面上,是另一个重要的避税,在存在高级通信压缩技术的情况下尚未同时解决。在本文中,我们提出了一个统一的框架,以通过沟通压缩提高私人联邦学习的沟通效率。利用通用压缩操作员和局部差异隐私,我们首先检查了一种简单的算法,该算法将压缩直接应用于差异私密的随机梯度下降,并确定其局限性。然后,我们为私人联合学习提出了一个统一的框架Soteriafl,该框架适应了一般的局部梯度估计剂家庭,包括流行的随机方差减少梯度方法和最先进的变化压缩方案。我们在隐私,公用事业和沟通复杂性方面提供了其性能权衡的全面表征,在这种情况下,Soterafl被证明可以在不牺牲隐私或实用性的情况下实现更好的沟通复杂性,而不是其他私人联合联盟学习算法而没有沟通压缩。
translated by 谷歌翻译
在本文中,我们仅使用部分分布式反馈来研究全球奖励最大化的问题。这个问题是由几个现实世界应用程序(例如蜂窝网络配置,动态定价和政策选择)激发的,其中中央实体采取的行动会影响有助于全球奖励的大量人群。但是,从整个人群那里收集此类奖励反馈不仅会产生高昂的成本,而且经常导致隐私问题。为了解决此问题,我们考虑了差异的私有分布式线性土匪,其中只选择了来自人群的一部分用户(称为客户)来参与学习过程,并且中央服务器通过迭代地汇总这些部分从这种部分反馈中学习了全局模型客户的本地反馈以差异化的方式。然后,我们提出了一个统一的算法学习框架,称为差异性分布式分布式消除(DP-DPE),该框架可以与流行的差异隐私(DP)模型(包括中央DP,Local DP,Local DP和Shuffle DP)自然集成。此外,我们证明DP-DPE既可以达到统一的遗憾,又实现了额定性沟通成本。有趣的是,DP-DPE也可以“免费”获得隐私保护,这是因为由于隐私保证是一个较低的加法术语。此外,作为我们技术的副产品,对于标准的差异私有线性匪徒,也可以实现“自由”隐私的相同结果。最后,我们进行模拟以证实我们的理论结果并证明DP-DPE的有效性。
translated by 谷歌翻译
作为标准本地模型和中央模型之间的中间信任模型,差异隐私的洗牌模型已引起了人们的极大兴趣[EFMRTT19;CSUZZ19]。该模型的关键结果是,随机洗牌本地随机数据放大了差异隐私保证。这种放大意味着对数据匿名贡献的系统提供了更大的隐私保证[BEMMRLRKTS17]。在这项工作中,我们通过在理论和数字上逐渐改造结果来改善最新隐私放大的状态。我们的第一个贡献是对LDP Randomizers洗牌输出的R \'enyi差异隐私参数的首次渐近最佳分析。我们的第二个贡献是通过改组对隐私放大的新分析。该分析改进了[FMT20]的技术,并导致所有参数设置中的数值范围更紧密。
translated by 谷歌翻译
我们展示了一个联合学习框架,旨在强大地提供具有异构数据的各个客户端的良好预测性能。所提出的方法对基于SuperQualile的学习目标铰接,捕获异构客户端的误差分布的尾统计。我们提出了一种随机训练算法,其与联合平均步骤交织差异私人客户重新重量步骤。该提出的算法支持有限时间收敛保证,保证覆盖凸和非凸面设置。关于联邦学习的基准数据集的实验结果表明,我们的方法在平均误差方面与古典误差竞争,并且在误差的尾统计方面优于它们。
translated by 谷歌翻译
联合学习(FL),数据保留在联合客户端,并且仅与中央聚合器共享梯度更新是私人的。最近的工作表明,具有梯度级别访问权限的对手可以成功进行推理和重建攻击。在这种情况下,众所周知,差异化(DP)学习可以提供弹性。但是,现状中使用的方法(\ ie中央和本地DP)引入了不同的公用事业与隐私权衡权衡。在这项工作中,我们迈出了通过{\ em层次fl(HFL)}来缓解此类权衡的第一步。我们证明,通过引入一个新的中介层,可以添加校准的DP噪声,可以获得更好的隐私与公用事业权衡;我们称此{\ em层次结构DP(HDP)}。我们使用3个不同数据集的实验(通常用作FL的基准)表明HDP产生的模型与使用中央DP获得的模型一样准确,在中央聚集器处添加了噪声。这种方法还为推理对手提供了可比的好处,例如在本地DP案例中,在联合客户端添加了噪音。
translated by 谷歌翻译
大规模的机器学习系统通常涉及分布在用户集合中的数据。联合学习算法通过将模型更新传达给中央服务器而不是整个数据集来利用此结构。在本文中,我们研究了一个个性化联合学习设置的随机优化算法,涉及符合用户级别(联合)差异隐私的本地和全球模型。在学习私人全球模型的同时,促进了隐私成本,但本地学习是完全私人的。我们提供概括保证,表明与私人集中学习协调本地学习可以产生一种普遍有用和改进的精度和隐私之间的权衡。我们通过有关合成和现实世界数据集的实验来说明我们的理论结果。
translated by 谷歌翻译