形状受限的符号回归(SCSR)允许将先验知识包括在基于数据的建模中。此包含允许确保所得模型更好地反映某些预期行为。预期行为是通过约束来定义的,该约束是指函数形式,例如单调性,凹度,凸度或模型图像边界。除了由于定义了对功能形状的约束而获得更健壮和可靠的模型的优势外,SCSR的使用还可以找到对噪声更强大并具有更好外推行为的模型。本文提出了一种最小化近似误差以及约束违规的方法。明确实施了两种算法NSGA-II和NSGA-III,并在模型质量和运行时相互比较。两种算法都能够处理多个目标,而NSGA-II是一种良好的多目标方法,在具有最新目标的实例上表现良好。 NSGA-III是NSGA-II算法的扩展,并开发出来处理“许多”目标(超过3个目标)的问题。两种算法均在物理教科书中选定的基准实例集上执行。结果表明,两种算法都能够找到很大的解决方案,并且NSGA-III在模型质量方面提供了略有改进。此外,可以使用多目标方法观察到运行时的改进。
translated by 谷歌翻译
多目标符号回归具有优点:虽然学习模型的准确性最大化,但复杂性自动调整,不需要指定a-priori。优化的结果不再是单一解决方案,而是整个帕累托 - 前面描述了准确性和复杂性之间的权衡。在这一贡献中,我们研究了在使用NSGA-II进行多目标优化时,在象征性回归中最适当地使用哪些复杂性度量。此外,我们提出了一种新的复杂性度量,包括基于模型中发生的函数符号的语义信息,并在几个基准数据集中测试其效果。结果比较多种复杂度措施的实现准确性和模型长度来呈现,以说明算法的搜索方向如何受到影响。
translated by 谷歌翻译
在许多科学领域中发现一个有意义的,尺寸同质的,象征性的表达是一个基本挑战。我们提出了一个新颖的开源计算框架,称为科学家机器方程探测器(Scimed),该框架将科学纪律智慧与科学家在循环的方法中融合在一起,并将其与最先进的符号回归(SR)方法相结合。Scimed将基于遗传算法的包装器选择方法与自动机器学习和两个SR方法结合在一起。我们对具有和没有非线性空气动力学阻力的球体沉降的四个配置进行了测试。我们表明,疲惫不堪的人足够坚固,可以从嘈杂的数据中发现正确的物理有意义的符号表达式。我们的结果表明,与最先进的SR软件包相比,这些任务的性能更好。
translated by 谷歌翻译
基于原子量表的材料建模在新材料的发展及其特性的理解中起着重要作用。粒子模拟的准确性由原子间电位确定,该电位允许计算原子系统的势能作为原子坐标和潜在的其他特性的函数。基于原理的临界电位可以达到任意水平的准确性,但是它们的合理性受其高计算成本的限制。机器学习(ML)最近已成为一种有效的方法,可以通过用经过电子结构数据培训的高效替代物代替昂贵的模型来抵消Ab始于原子电位的高计算成本。在当前大量方法中,符号回归(SR)正在成为一种强大的“白盒”方法,以发现原子质潜力的功能形式。这项贡献讨论了符号回归在材料科学(MS)中的作用,并对当前的方法论挑战和最新结果提供了全面的概述。提出了一种基于遗传编程的方法来建模原子能(由原子位置和相关势能的快照组成),并在从头算电子结构数据上进行了经验验证。
translated by 谷歌翻译
由于强烈的非线性系统行为和多个竞争目标,能源系统优化问题很复杂,例如,经济增益与环境影响。此外,大量输入变量和不同的变量类型,例如,连续和分类,是现实世界应用中常见的挑战。在某些情况下,提出的最佳解决方案需要遵守与物理性质或安全关键操作条件相关的显式输入限制。本文提出了一种新的数据驱动策略,使用树集合用于对黑匣子问题的约束多目标优化,与模型或未知的基础系统动态太复杂的异构变量空间。在由合成基准和相关能源应用组成的广泛案例研究中,我们展示了与其他最先进的工具相比,所提出的算法的竞争性能和采样效率,使其成为一个有用的全能解决方案 - 世界申请有限评价预算。
translated by 谷歌翻译
在材料科学中,衍生模型以预测突出材料特性(例如弹性,强度,电导率)及其与加工条件的关系。主要缺点是校准依赖于处理条件的模型参数。目前,必须优化这些参数以拟合测量数据,因为它们与处理条件(例如变形温度,应变率)的关系不完全理解。我们提出了一种新的方法,该方法识别了基于遗传编程的处理条件的校准参数的功能依赖性。我们提出了两个(显式和隐式)方法来识别这些依赖项并生成短暂的可解释表达式。该方法用于扩展基于物理的组成型模型以进行变形过程。该本结构型模型与内部材料变量(例如位错密度)进行操作,并且包含许多参数,其中包括三个校准参数。衍生的表达式扩展了本组件模型并替换校准参数。因此,启用各种处理参数之间的插值。我们的研究结果表明,隐式方法比明确的方法更昂贵,但也产生明显更好的结果。
translated by 谷歌翻译
语义已成为遗传编程(GP)研究的关键话题。语义是指在数据集上运行时GP个体的输出(行为)。专注于单目标GP中语义多样性的大多数作品表明它在进化搜索方面是非常有益的。令人惊讶的是,在多目标GP(MOGP)中,在语义中进行了小型研究。在这项工作中,我们跨越我们对Mogp中语义的理解,提出SDO:基于语义的距离作为额外标准。这自然鼓励Mogp中的语义多样性。为此,我们在第一个帕累托前面的较密集的区域(最有前途的前沿)找到一个枢轴。然后,这用于计算枢轴与人群中的每个人之间的距离。然后将所得到的距离用作优化以优化以偏及语义分集的额外标准。我们还使用其他基于语义的方法作为基准,称为基于语义相似性的交叉和语义的拥挤距离。此外,我们也使用NSGA-II和SPEA2进行比较。我们使用高度不平衡二进制分类问题,一致地展示我们所提出的SDO方法如何产生更多非主导的解决方案和更好的多样性,导致更好的统计学显着的结果,与其他四种方法相比,使用超卓越症结果作为评估措施。
translated by 谷歌翻译
HyperParameter Optimization(HPO)是一种确保机器学习(ML)算法最佳性能的必要步骤。已经开发了几种方法来执行HPO;其中大部分都集中在优化一个性能措施(通常是基于错误的措施),并且在这种单一目标HPO问题上的文献是巨大的。然而,最近似乎似乎侧重于同时优化多个冲突目标的算法。本文提出了对2014年至2020年的文献的系统调查,在多目标HPO算法上发布,区分了基于成逐的算法,Metamodel的算法以及使用两者混合的方法。我们还讨论了用于比较多目标HPO程序和今后的研究方向的质量指标。
translated by 谷歌翻译
超参数优化构成了典型的现代机器学习工作流程的很大一部分。这是由于这样一个事实,即机器学习方法和相应的预处理步骤通常只有在正确调整超参数时就会产生最佳性能。但是在许多应用中,我们不仅有兴趣仅仅为了预测精度而优化ML管道;确定最佳配置时,必须考虑其他指标或约束,从而导致多目标优化问题。由于缺乏知识和用于多目标超参数优化的知识和容易获得的软件实现,因此通常在实践中被忽略。在这项工作中,我们向读者介绍了多个客观超参数优化的基础知识,并激励其在应用ML中的实用性。此外,我们从进化算法和贝叶斯优化的领域提供了现有优化策略的广泛调查。我们说明了MOO在几个特定ML应用中的实用性,考虑了诸如操作条件,预测时间,稀疏,公平,可解释性和鲁棒性之类的目标。
translated by 谷歌翻译
由于其良好的特性,诸如高强度重量比,设计灵活性,限量的应力浓度,平面力传递,良好损害耐受性和疲劳性,因此越来越多地应用于各种应用的各种应用。寻找粘合剂粘合过程的最佳过程参数是具有挑战性的:优化是固有的多目标(旨在最大限度地提高断裂强度,同时最小化成本)和受约束(该过程不应导致材料的任何视觉损坏,应应对压力测试不会导致粘附相关的故障。实验室中的现实生活实验需要昂贵;由于评估所需的禁止的实验,传统的进化方法(如遗传算法)被否则适合解决问题。在本研究中,我们成功地应用了特定的机器学习技术(高斯过程回归和逻辑回归),以基于有限量的实验数据来模拟目标和约束函数。该技术嵌入贝叶斯优化算法中,该算法成功地以高效的方式检测静态过程设置(即,需要有限数量的额外实验)。
translated by 谷歌翻译
可以将多任务学习(MTL)范例追溯到Caruana(1997)的早期纸张中,其中表示可以使用来自多个任务的数据,其目的是在独立地学习每个任务的旨在获得更好的性能。 MTL与相互矛盾的目标的解决方案需要在它们中进行折衷,这通常超出了直线组合可以实现的。理论上原则和计算有效的策略正在寻找不受他人主导的解决方案,因为它在帕累托分析中解决了它。多任务学习环境中产生的多目标优化问题具有特定的功能,需要adhoc方法。对这些特征的分析和新的计算方法的提议代表了这项工作的重点。多目标进化算法(MOEAS)可以容易地包括优势的概念,因此可以分析。 MOEAS的主要缺点是关于功能评估的低样本效率。此缺点的关键原因是大多数进化方法不使用模型来近似于目标函数。贝叶斯优化采用基于代理模型的完全不同的方法,例如高斯过程。在本文中,输入空间中的解决方案表示为封装功能评估中包含的知识的概率分布。在这种概率分布的空间中,赋予由Wassersein距离给出的度量,可以设计一种新的算法MOEA / WST,其中模型不直接在目标函数上,而是在输入空间中的对象的中间信息空间中被映射成直方图。计算结果表明,MoEA / WST提供的样品效率和帕累托集的质量明显优于标准MoEa。
translated by 谷歌翻译
可解释的回归模型对于许多应用程序域很重要,因为它们允许专家了解稀疏数据中变量之间的关系。符号回归通过搜索可以从基本代数函数构建的所有可能的自由形式方程的空间来解决此问题。尽管可以通过这种方式重新发现明确的数学函数,但在搜索过程中确定未知数值常数一直是一个经常被忽略的问题。我们提出了一种新的多目标模因算法,该算法利用了一个可区分的笛卡尔遗传编程编码,以在进化循环期间学习常数。我们表明,这种方法具有竞争力或胜过机器的黑匣子回归模型或用于两个应用的手工设计的拟合:火星表达热力估计和通过陀螺安排确定恒星年龄。
translated by 谷歌翻译
在过去的几十年中,经典的车辆路由问题(VRP),即为车辆分配一组订单并规划他们的路线已经被密集研究。仅作为车辆的订单分配和他们的路线已经是一个NP完整的问题,因此在实践中的应用通常无法考虑在现实世界应用中应用的约束和限制,所谓的富VRP所谓的富VRP(RVRP)并且仅限于单一方面。在这项工作中,我们融入了主要的相关真实限制和要求。我们提出了一种两级策略和时间线窗口和暂停时间的时间线算法,并将遗传算法(GA)和蚁群优化(ACO)单独应用于问题以找到最佳解决方案。我们对四种不同问题实例的评估,针对四个最先进的算法表明,我们的方法在合理的时间内处理所有给定的约束。
translated by 谷歌翻译
传感器节点(SNS)的部署总是在无线传感器网络(WSN)的系统性能中起决定性作用。在这项工作中,我们提出了一种实用异构WSN的最佳部署方法,该方法可以深入了解可靠性和部署成本之间的权衡。具体而言,这项工作旨在提供SNS的最佳部署,以最大程度地提高覆盖率和连接学位,同时最大程度地减少整体部署成本。此外,这项工作充分考虑了SNS的异质性(即差异化的传感范围和部署成本)和三维(3-D)部署方案。这是一个多目标优化问题,非凸,多模态和NP-HARD。为了解决它,我们开发了一种新型的基于群体的多目标优化算法,称为竞争性多目标海洋掠食者算法(CMOMPA),其性能通过与十种其他多个多目标优化的全面比较实验验证算法。计算结果表明,在收敛性和准确性方面,CMOMPA优于他人,并且在多模式多目标优化问题上表现出卓越的性能。还进行了足够的模拟来评估基于CMOMPA的最佳SNS部署方法的有效性。结果表明,优化的部署可以平衡部署成本,感知可靠性和网络可靠性之间的权衡平衡。源代码可在https://github.com/inet-wzu/cmompa上找到。
translated by 谷歌翻译
长期以来,科学家一直旨在发现有意义的公式,以准确描述实验数据。一种常见的方法是使用域知识手动创建自然现象的数学模型,然后将这些模型拟合到数据。相比之下,机器学习算法在消耗大量数据的同时可以自动化准确的数据驱动模型的构建。在文献中探讨了对学习模型的功能形式(例如,非负)的逻辑约束的问题。但是,寻找与一般背景知识一致的模型是一个开放的问题。我们开发了一种将逻辑推理与符号回归相结合的方法,从而实现了自然现象模型的原则推导。我们演示了这些概念,用于开普勒的第三个行星运动定律,爱因斯坦的相对论时间稀释定律以及兰穆尔的吸附理论,在每种情况下都会将实验数据与背景理论自动连接起来。我们表明,使用形式的逻辑推理将正确的公式与一组合理公式区分开时,可以从几个数据点发现法律,这些公式在数据上具有相似的错误。推理与机器学习的结合提供了对自然现象的关键方面的可概括见解。我们设想,这种组合将使能够发现基本科学定律,并认为我们的工作是自动化科学方法的关键第一步。
translated by 谷歌翻译
加固学习算法可以解决动态决策和最优控制问题。通过连续值的状态和输入变量,强化学习算法必须依赖函数近似器来表示值函数和策略映射。常用的数值近似器,如神经网络或基础函数扩展,具有两个主要缺点:它们是黑匣子型号,可以对学习的映射有很小的洞察力,并且他们需要广泛的试验和错误调整它们的超参数。在本文中,我们通过使用符号回归提出了一种以分析表达式的形式构建平滑值函数的新方法。我们介绍了三种离线方法,用于基于状态转换模型查找值函数:符号值迭代,符号策略迭代,以及Bellman方程的直接解决方案。该方法在四个非线性控制问题上说明:速度控制摩擦力控制,单键和双连杆摆动,和磁操作。结果表明,该价值函数产生良好的策略,并紧凑,数学上易行,易于插入其他算法。这使得它们可能适用于进一步分析闭环系统。使用神经网络的替代方法的比较表明,我们的方法优于基于神经网络的方法。
translated by 谷歌翻译
某人如何分配时间对他们的健康和福祉很重要。在本文中,我们展示了如何通过优化时间使用时间来使用进化算法来促进健康和福祉。根据来自大型人群儿童队列的数据,我们设计健身功能来解释健康结果并引入可行时间计划的限制。然后,我们研究了进化算法的性能,以优化具有不同日期结构的假设儿童的四个个人健康结果的时间使用。随着四个健康结果正在争夺时间分配,我们研究如何以多目标优化问题的形式同时优化多个健康结果。我们使用进化多目标算法优化了一周的时间使用计划,并指出在不同的健康结果方面可以实现的权衡。
translated by 谷歌翻译
多目标定向运动问题(MO-OPS)是经典的多目标路由问题,在过去几十年中,人们一直受到很多关注。这项研究旨在通过问题分解框架解决MO-OPS,即MO-OP分解为多目标背包问题(MOKP)和旅行推销员问题(TSP)。然后,MOKP和TSP分别通过多目标进化算法(MOEA)和深钢筋学习(DRL)方法来解决。虽然MOEA模块用于选择城市,但DRL模块用于计划这些城市的哈密顿路径。这两个模块的迭代使用将人口驱动到Mo-ops的帕累托前沿。在各种类型的MO-OP实例上,将提出方法的有效性与NSGA-II和NSGA-III进行了比较。实验结果表明,我们的方法几乎在所有测试实例上表现出最佳性能,并且表现出强大的概括能力。
translated by 谷歌翻译
In today's uncertain and competitive market, where enterprises are subjected to increasingly shortened product life-cycles and frequent volume changes, reconfigurable manufacturing systems (RMS) applications play a significant role in the manufacturing industry's success. Despite the advantages offered by RMS, achieving a high-efficiency degree constitutes a challenging task for stakeholders and decision-makers when they face the trade-off decisions inherent in these complex systems. This study addresses work tasks and resource allocations to workstations together with buffer capacity allocation in RMS. The aim is to simultaneously maximize throughput and minimize total buffer capacity under fluctuating production volumes and capacity changes while considering the stochastic behavior of the system. An enhanced simulation-based multi-objective optimization (SMO) approach with customized simulation and optimization components is proposed to address the abovementioned challenges. Apart from presenting the optimal solutions subject to volume and capacity changes, the proposed approach support decision-makers with discovered knowledge to further understand the RMS design. In particular, this study presents a problem-specific customized SMO combined with a novel flexible pattern mining method for optimizing RMS and conducting post-optimal analyzes. To this extent, this study demonstrates the benefits of applying SMO and knowledge discovery methods for fast decision-support and production planning of RMS.
translated by 谷歌翻译