可靠的异常检测对于深度学习模型的现实应用至关重要。深层生成模型产生的可能性虽然进行了广泛的研究,但仍被认为是对异常检测的不切实际的。一方面,深层生成模型的可能性很容易被低级输入统计数据偏差。其次,许多用于纠正这些偏见的解决方案在计算上是昂贵的,或者对复杂的天然数据集的推广不佳。在这里,我们使用最先进的深度自回归模型探索离群值检测:PixelCNN ++。我们表明,PixelCNN ++的偏见主要来自基于局部依赖性的预测。我们提出了两个我们称为“震动”和“搅拌”的徒转化家族,它们可以改善低水平的偏见并隔离长期依赖性对PixelCNN ++可能性的贡献。这些转换在计算上是便宜的,并且在评估时很容易应用。我们使用五个灰度和六个自然图像数据集对我们的方法进行了广泛的评估,并表明它们达到或超过了最新的离群检测性能。总而言之,轻巧的补救措施足以在具有深层生成模型的图像上实现强大的离群检测。
translated by 谷歌翻译
当用离群数据与培训分布相去甚远,深层网络通常会充满信心,但仍有不正确的预测。由深生成模型(DGM)计算出的可能性是使用未标记数据的异常检测的候选指标。然而,以前的研究表明,DGM的可能性是不可靠的,可以通过简单转换对输入数据很容易偏见。在这里,我们在最简单的DGM中检查了使用变异自动编码器(VAE)(VAE)的离群值检测。我们提出了新型的分析和算法方法,以减轻VAE可能性的关键偏见。我们的偏差校正是特定于样本的,计算便宜的,并且很容易针对各种解码器可见分布进行计算。接下来,我们表明,众所周知的图像预处理技术(对比拉伸)扩展了偏置校正的有效性,以进一步改善异常检测。我们的方法通过九个灰度和自然图像数据集实现了最先进的精度,并在最近的四种竞争方法中表现出了显着的优势 - 无论是速度和性能而言,都具有显着的优势。总而言之,轻巧的补救措施足以通过VAE实现强大的离群值检测。
translated by 谷歌翻译
现代的深层生成模型可以为从训练分布外部提取的输入分配很高的可能性,从而对开放世界部署中的模型构成威胁。尽管已经对定义新的OOD不确定性测试时间度量的研究进行了很多关注,但这些方法并没有从根本上改变生成模型在训练中的正则和优化。特别是,生成模型被证明过于依赖背景信息来估计可能性。为了解决这个问题,我们提出了一个新颖的OOD检测频率调查学习FRL框架,该框架将高频信息纳入培训中,并指导模型专注于语义相关的功能。 FRL有效地提高了广泛的生成架构的性能,包括变异自动编码器,Glow和PixelCNN ++。在一项新的大规模评估任务中,FRL实现了最先进的表现,表现优于强大的基线可能性遗憾,同时达到了147 $ \ times $ $ $ $ $ \ times $ a的推理速度。广泛的消融表明,FRL在保留图像生成质量的同时改善了OOD检测性能。代码可在https://github.com/mu-cai/frl上找到。
translated by 谷歌翻译
分发(OOD)检测和无损压缩构成了两个问题,可以通过对第一个数据集的概率模型进行训练来解决,其中在第二数据集上的后续似然评估,其中数据分布不同。通过在可能性方面定义概率模型的概括,我们表明,在图像模型的情况下,泛展能力通过本地特征主导。这激励了我们对本地自回归模型的提议,该模型专门为局部图像特征而达到改善的性能。我们将拟议的模型应用于检测任务,并在未引入其他数据的情况下实现最先进的无监督的检测性能。此外,我们使用我们的模型来构建新的无损图像压缩机:Nelloc(神经本地无损压缩机)和报告最先进的压缩率和模型大小。
translated by 谷歌翻译
Discriminative neural networks offer little or no performance guarantees when deployed on data not generated by the same process as the training distribution. On such out-of-distribution (OOD) inputs, the prediction may not only be erroneous, but confidently so, limiting the safe deployment of classifiers in real-world applications. One such challenging application is bacteria identification based on genomic sequences, which holds the promise of early detection of diseases, but requires a model that can output low confidence predictions on OOD genomic sequences from new bacteria that were not present in the training data. We introduce a genomics dataset for OOD detection that allows other researchers to benchmark progress on this important problem. We investigate deep generative model based approaches for OOD detection and observe that the likelihood score is heavily affected by population level background statistics. We propose a likelihood ratio method for deep generative models which effectively corrects for these confounding background statistics. We benchmark the OOD detection performance of the proposed method against existing approaches on the genomics dataset and show that our method achieves state-of-the-art performance. We demonstrate the generality of the proposed method by showing that it significantly improves OOD detection when applied to deep generative models of images.
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
Out-of-distribution detection is crucial to the safe deployment of machine learning systems. Currently, the state-of-the-art in unsupervised out-of-distribution detection is dominated by generative-based approaches that make use of estimates of the likelihood or other measurements from a generative model. Reconstruction-based methods offer an alternative approach, in which a measure of reconstruction error is used to determine if a sample is out-of-distribution. However, reconstruction-based approaches are less favoured, as they require careful tuning of the model's information bottleneck - such as the size of the latent dimension - to produce good results. In this work, we exploit the view of denoising diffusion probabilistic models (DDPM) as denoising autoencoders where the bottleneck is controlled externally, by means of the amount of noise applied. We propose to use DDPMs to reconstruct an input that has been noised to a range of noise levels, and use the resulting multi-dimensional reconstruction error to classify out-of-distribution inputs. Our approach outperforms not only reconstruction-based methods, but also state-of-the-art generative-based approaches.
translated by 谷歌翻译
The problem of detecting the Out-of-Distribution (OoD) inputs is of paramount importance for Deep Neural Networks. It has been previously shown that even Deep Generative Models that allow estimating the density of the inputs may not be reliable and often tend to make over-confident predictions for OoDs, assigning to them a higher density than to the in-distribution data. This over-confidence in a single model can be potentially mitigated with Bayesian inference over the model parameters that take into account epistemic uncertainty. This paper investigates three approaches to Bayesian inference: stochastic gradient Markov chain Monte Carlo, Bayes by Backpropagation, and Stochastic Weight Averaging-Gaussian. The inference is implemented over the weights of the deep neural networks that parameterize the likelihood of the Variational Autoencoder. We empirically evaluate the approaches against several benchmarks that are often used for OoD detection: estimation of the marginal likelihood utilizing sampled model ensemble, typicality test, disagreement score, and Watanabe-Akaike Information Criterion. Finally, we introduce two simple scores that demonstrate the state-of-the-art performance.
translated by 谷歌翻译
We present an approach to quantifying both aleatoric and epistemic uncertainty for deep neural networks in image classification, based on generative adversarial networks (GANs). While most works in the literature that use GANs to generate out-of-distribution (OoD) examples only focus on the evaluation of OoD detection, we present a GAN based approach to learn a classifier that produces proper uncertainties for OoD examples as well as for false positives (FPs). Instead of shielding the entire in-distribution data with GAN generated OoD examples which is state-of-the-art, we shield each class separately with out-of-class examples generated by a conditional GAN and complement this with a one-vs-all image classifier. In our experiments, in particular on CIFAR10, CIFAR100 and Tiny ImageNet, we improve over the OoD detection and FP detection performance of state-of-the-art GAN-training based classifiers. Furthermore, we also find that the generated GAN examples do not significantly affect the calibration error of our classifier and result in a significant gain in model accuracy.
translated by 谷歌翻译
基于密度的分布(OOD)检测最近显示了检测OOD图像的任务不可靠。基于各种密度比的方法实现了良好的经验性能,但是方法通常缺乏原则性的概率建模解释。在这项工作中,我们建议在建立基于能量的模型并采用不同基础分布的新框架下统一基于密度比的方法。在我们的框架下,密度比可以看作是隐式语义分布的非均衡密度。此外,我们建议通过类比率估计直接估计数据样本的密度比。与最近的工作相比,我们报告了有关OOD图像问题的竞争结果,这些工作需要对任务进行深层生成模型的培训。我们的方法使一个简单而有效的途径可以解决OOD检测问题。
translated by 谷歌翻译
在值得信赖的机器学习中,这是一个重要的问题,可以识别与分配任务无关的输入的分布(OOD)输入。近年来,已经提出了许多分布式检测方法。本文的目的是识别共同的目标以及确定不同OOD检测方法的隐式评分函数。我们专注于在培训期间使用替代OOD数据的方法,以学习在测试时概括为新的未见外部分布的OOD检测分数。我们表明,内部和(不同)外部分布之间的二元歧视等同于OOD检测问题的几种不同的公式。当与标准分类器以共同的方式接受培训时,该二进制判别器达到了类似于离群暴露的OOD检测性能。此外,我们表明,异常暴露所使用的置信损失具有隐式评分函数,在训练和测试外部分配相同的情况下,以非平凡的方式与理论上最佳评分功能有所不同,这又是类似于训练基于能量的OOD检测器或添加背景类时使用的一种。在实践中,当以完全相同的方式培训时,所有这些方法的性能类似。
translated by 谷歌翻译
检测到分布(OOD)数据是一项任务,它正在接受计算机视觉的深度学习领域越来越多的研究注意力。但是,通常在隔离任务上评估检测方法的性能,而不是考虑串联中的潜在下游任务。在这项工作中,我们检查了存在OOD数据(SCOD)的选择性分类。也就是说,检测OOD样本的动机是拒绝它们,以便降低它们对预测质量的影响。我们在此任务规范下表明,与仅在OOD检测时进行评估时,现有的事后方法的性能大不相同。这是因为如果ID数据被错误分类,将分布分配(ID)数据与OOD数据混合在一起的问题不再是一个问题。但是,正确和不正确的预测的ID数据中的汇合变得不受欢迎。我们还提出了一种新颖的SCOD,SoftMax信息保留(SIRC)的方法,该方法通过功能不足信息来增强基于软疗法的置信度得分,以便在不牺牲正确和错误的ID预测之间的分离的情况下,可以提高其识别OOD样品的能力。在各种成像网尺度数据集和卷积神经网络体系结构上进行的实验表明,SIRC能够始终如一地匹配或胜过SCOD的基线,而现有的OOD检测方法则无法做到。
translated by 谷歌翻译
变形自身偏移(VAES)是具有来自深神经网络架构和贝叶斯方法的丰富代表功能的有影响力的生成模型。然而,VAE模型具有比分布(ID)输入的分配方式分配更高的可能性较高的可能性。为了解决这个问题,认为可靠的不确定性估计是对对OOC投入的深入了解至关重要。在这项研究中,我们提出了一种改进的噪声对比之前(INCP),以便能够集成到VAE的编码器中,称为INCPVAE。INCP是可扩展,可培训和与VAE兼容的,它还采用了来自INCP的优点进行不确定性估计。各种数据集的实验表明,与标准VAE相比,我们的模型在OOD数据的不确定性估计方面是优越的,并且在异常检测任务中是强大的。INCPVAE模型获得了可靠的输入不确定性估算,并解决了VAE模型中的ood问题。
translated by 谷歌翻译
在过去的几年中,关于分类,检测和分割问题的3D学习领域取得了重大进展。现有的绝大多数研究都集中在规范的封闭式条件上,忽略了现实世界的内在开放性。这限制了需要管理新颖和未知信号的自主系统的能力。在这种情况下,利用3D数据可以是有价值的资产,因为它传达了有关感应物体和场景几何形状的丰富信息。本文提供了关于开放式3D学习的首次广泛研究。我们介绍了一种新颖的测试床,其设置在类别语义转移方面的难度增加,并且涵盖了内域(合成之间)和跨域(合成对真实)场景。此外,我们研究了相关的分布情况,并开放了2D文献,以了解其最新方法是否以及如何在3D数据上有效。我们广泛的基准测试在同一连贯的图片中定位了几种算法,从而揭示了它们的优势和局限性。我们的分析结果可能是未来量身定制的开放式3D模型的可靠立足点。
translated by 谷歌翻译
深度神经网络拥有的一个重要股权是在以前看不见的数据上对分发检测(OOD)进行强大的能力。在为现实世界应用程序部署模型时,此属性对于安全目的至关重要。最近的研究表明,概率的生成模型可以在这项任务上表现不佳,这令他们寻求估计培训数据的可能性。为了减轻这个问题,我们提出了对变分性自动化器(VAE)的指数倾斜的高斯先前分配。通过此之前,我们能够使用VAE自然分配的负面日志可能性来实现最先进的结果,同时比某些竞争方法快的数量级。我们还表明,我们的模型生产高质量的图像样本,这些样本比标准高斯VAE更清晰。新的先前分配具有非常简单的实现,它使用kullback leibler发散,该kullback leibler发散,该横向leibler发散,该分解比较潜伏向量的长度与球体的半径之间的差异。
translated by 谷歌翻译
本文我们的目标是利用异质的温度缩放作为校准策略(OOD)检测。此处的异质性是指每个样品的最佳温度参数可能不同,而不是传统的方法对整个分布使用相同的值。为了实现这一目标,我们提出了一种称为锚定的新培训策略,可以估算每个样品的适当温度值,从而导致几个基准的最新OOD检测性能。使用NTK理论,我们表明该温度函数估计与分类器的认知不确定性紧密相关,这解释了其行为。与某些表现最佳的OOD检测方法相反,我们的方法不需要暴露于其他离群数据集,自定义校准目标或模型结合。通过具有不同OOD检测设置的经验研究 - 远处,OOD附近和语义相干OOD - 我们建立了一种高效的OOD检测方法。可以在此处访问代码和模型-https://github.com/rushilanirudh/amp
translated by 谷歌翻译
背景。通常,深度神经网络(DNN)概括了从类似于训练集的分布的样本概括。然而,当测试样本从不同的分布中抽出时,DNNS的预测是脆性和不可靠的。这是在现实世界应用中部署的主要关注点,这种行为可能以相当大的成本,例如工业生产线,自治车辆或医疗保健应用。贡献。我们将DNN中的分布(OOD)检测出来作为统计假设检测问题。在我们所提出的框架内产生的测试将证据组合来自整个网络。与以前的检测启发式不同,此框架返回每个测试样本的$ p $ -value。有保证维护I型错误(T1E - 错误地识别OOD样本为ID)进行测试数据。此外,这允许在保持T1E的同时组合多个检测器。在此框架上建立,我们建议一种基于低阶统计数据的新型程序。我们的方法在不接受的EOD基准上的最新方法实现了比较或更好的结果,而无需再培训网络参数或假设测试分配的现有知识 - 并且以计算成本的一小部分。
translated by 谷歌翻译
无监督的分销(U-OOD)检测最近引起了很多关注,因为它在关键任务系统中的重要性以及对其监督对方的更广泛的适用性。尽管注意力增加,U-OOD方法遭受了重要的缺点。通过对不同的基准和图像方式进行大规模评估,我们在这项工作中展示了最受欢迎的最先进的方法无法始终如一地始终基于Mahalanobis距离(Mahaad)的简单且相对未知的异常探测器。这些方法不一致的一个关键原因是缺乏U-OOD的正式描述。通过一个简单的思想实验,我们提出了基于培训数据集的不变性的U-OOD的表征。我们展示了这种表征如何在众所周置的Mahaad方法中体现在不知不觉中,从而解释了其质量。此外,我们的方法可用于解释U-OOD探测器的预测,并为评估未来U-OOD方法的良好实践提供见解。
translated by 谷歌翻译
归一化流是突出的深层生成模型,提供了易诊的概率分布和有效密度估计。但是,众所周知,在检测到分配(OOD)输入时,它们是众所周知的,因为它们直接在其潜在空间中对输入表示的本地特征进行了编码。在本文中,我们通过演示流动,如果通过注意机制延伸,可以通过表明流动,可以可靠地检测到包括对抗攻击的异常值。我们的方法不需要对培训的异常数据,并通过在多样化的实验设置中报告最先进的性能来展示我们的ood检测方法的效率。代码在https://github.com/computationalradiationphysphysics/inflow上提供。
translated by 谷歌翻译
A neural network deployed in the wild may be asked to make predictions for inputs that were drawn from a different distribution than that of the training data. A plethora of work has demonstrated that it is easy to find or synthesize inputs for which a neural network is highly confident yet wrong. Generative models are widely viewed to be robust to such mistaken confidence as modeling the density of the input features can be used to detect novel, out-of-distribution inputs. In this paper we challenge this assumption. We find that the density learned by flow-based models, VAEs, and PixelCNNs cannot distinguish images of common objects such as dogs, trucks, and horses (i.e. CIFAR-10) from those of house numbers (i.e. SVHN), assigning a higher likelihood to the latter when the model is trained on the former. Moreover, we find evidence of this phenomenon when pairing several popular image data sets: FashionMNIST vs MNIST, CelebA vs SVHN, ImageNet vs CIFAR-10 / CIFAR-100 / SVHN. To investigate this curious behavior, we focus analysis on flow-based generative models in particular since they are trained and evaluated via the exact marginal likelihood. We find such behavior persists even when we restrict the flows to constant-volume transformations. These transformations admit some theoretical analysis, and we show that the difference in likelihoods can be explained by the location and variances of the data and the model curvature. Our results caution against using the density estimates from deep generative models to identify inputs similar to the training distribution until their behavior for out-of-distribution inputs is better understood.
translated by 谷歌翻译