回答有关图像的复杂问题是机器智能的雄心勃勃的目标,这需要联合了解图像,文本和致料知识,以及强烈的推理能力。最近,多模式变压器通过联合了解视觉对象和文本令牌,通过跨模型关注的层次,通过跨模板的关注来实现了巨大的进展。然而,这些方法不利用现场的丰富结构和对象之间的相互作用,这在回答复杂的致辞问题方面至关重要。我们提出了一个场景图,增强了图像文本学习(SGEITL)框架,以在致辞中合并视觉场景图。为了利用场景图结构,在模型结构级别,我们提出了一个多彩色图形变压器,用于规范跳跃之间的注意力。至于预训练,提出了一种场景图感知的预训练方法,以利用在视觉场景图中提取的结构知识。此外,我们介绍一种以虚弱的方式使用文本注释训练和生成域相关视野图的方法。与最先进的方法相比,对VCR和其他任务的广泛实验表明了显着的性能提升,并证明了每个提出的组分的功效。
translated by 谷歌翻译
视觉关系检测(VRD)促使计算机视觉模型“看到”超越单个对象实例,并“理解”场景中不同对象是如何相关的。 VRD的传统方式首先检测图像中的对象,然后单独预测检测到的对象实例之间的关系。这种不相交的方法很容易预测具有相似语义含义的同一对象对之间的冗余关系标签(即谓词),或者具有与地面真实含义相似但在语义上不正确的含义相似的语义含义。为了解决这个问题,我们建议共同训练具有视觉对象特征和语义关系特征的VRD模型。为此,我们提出了弗雷伯特(Vrebert),这是一种类似于伯特的变压器模型,用于通过多阶段训练策略进行视觉关系检测,以共同处理视觉和语义特征。我们表明,我们简单的类似BERT的模型能够超越谓词预测中最先进的VRD模型。此外,我们表明,通过使用预先训练的Vrebert模型,我们的模型通过明显的余量(+8.49 r@50和+8.99 R@100)推动了最新的零拍谓语预测。
translated by 谷歌翻译
自我监督的视觉和语言预处理(VLP)旨在从大规模的图像文本数据中学习可转移的多模式表示形式,并在填充后在广泛的视觉范围内实现强大的表现。以前的主流VLP方法通常采用依靠外部对象检测器来编码多模式变压器框架中的图像的两步策略,该框架遭受了限制性对象概念空间,有限的图像上下文和效率低下的计算。在本文中,我们提出了一个对象感知的端到端VLP框架,该框架将来自CNN的图像网格特征直接馈送到变压器中,并共同学习多模式表示。更重要的是,我们建议执行对象知识蒸馏,以促进在不同语义级别的学习跨模式对齐。为了实现这一目标,我们通过将对象特征及其来自外部检测器的语义标签作为监督来设计两个新颖的借口任务:1。)对象引导的蒙版视觉建模任务的重点是在多模式变压器中强制执行对象感知的表示的学习; 2.)短语区域对准任务旨在通过利用语言空间中名词短语和对象标签之间的相似性来改善跨模式对齐。对各种视觉语言任务进行的广泛实验证明了我们提出的框架的功效,并且我们在现有的预科策略中实现了竞争性或优越的表现。
translated by 谷歌翻译
Visual commonsense understanding requires Vision Language (VL) models to not only understand image and text but also cross-reference in-between to fully integrate and achieve comprehension of the visual scene described. Recently, various approaches have been developed and have achieved high performance on visual commonsense benchmarks. However, it is unclear whether the models really understand the visual scene and underlying commonsense knowledge due to limited evaluation data resources. To provide an in-depth analysis, we present a Multimodal Evaluation (ME) pipeline to automatically generate question-answer pairs to test models' understanding of the visual scene, text, and related knowledge. We then take a step further to show that training with the ME data boosts the model's performance in standard VCR evaluation. Lastly, our in-depth analysis and comparison reveal interesting findings: (1) semantically low-level information can assist the learning of high-level information but not the opposite; (2) visual information is generally under utilization compared with text.
translated by 谷歌翻译
Vision-and-Language Pre-training (VLP) has improved performance on various joint vision-andlanguage downstream tasks. Current approaches to VLP heavily rely on image feature extraction processes, most of which involve region supervision (e.g., object detection) and the convolutional architecture (e.g., ResNet). Although disregarded in the literature, we find it problematic in terms of both (1) efficiency/speed, that simply extracting input features requires much more computation than the multimodal interaction steps; and (2) expressive power, as it is upper bounded to the expressive power of the visual embedder and its predefined visual vocabulary. In this paper, we present a minimal VLP model, Vision-and-Language Transformer (ViLT), monolithic in the sense that the processing of visual inputs is drastically simplified to just the same convolution-free manner that we process textual inputs. We show that ViLT is up to tens of times faster than previous VLP models, yet with competitive or better downstream task performance. Our code and pre-trained weights are available at https://github.com/dandelin/vilt.
translated by 谷歌翻译
Large-scale pre-training methods of learning cross-modal representations on image-text pairs are becoming popular for vision-language tasks. While existing methods simply concatenate image region features and text features as input to the model to be pre-trained and use selfattention to learn image-text semantic alignments in a brute force manner, in this paper, we propose a new learning method Oscar 1 , which uses object tags detected in images as anchor points to significantly ease the learning of alignments. Our method is motivated by the observation that the salient objects in an image can be accurately detected, and are often mentioned in the paired text. We pre-train an Oscar model on the public corpus of 6.5 million text-image pairs, and fine-tune it on downstream tasks, creating new state-of-the-arts on six well-established vision-language understanding and generation tasks. 2
translated by 谷歌翻译
随着变压器的发展,近年来预先训练的模型已经以突破性的步伐发展。他们在自然语言处理(NLP)和计算机视觉(CV)中主导了主流技术。如何将预训练适应视觉和语言(V-L)学习和改善下游任务绩效成为多模式学习的重点。在本文中,我们回顾了视力语言预训练模型(VL-PTMS)的最新进展。作为核心内容,我们首先简要介绍了几种方法,将原始图像和文本编码为单模式嵌入在预训练之前。然后,我们在建模文本和图像表示之间的相互作用时深入研究VL-PTM的主流体系结构。我们进一步提出了广泛使用的预训练任务,然后我们介绍了一些常见的下游任务。我们终于结束了本文,并提出了一些有前途的研究方向。我们的调查旨在为研究人员提供合成和指向相关研究的指针。
translated by 谷歌翻译
变压器架构已经带来了计算语言领域的根本变化,这已经由经常性神经网络主导多年。它的成功还意味着具有语言和愿景的跨模型任务的大幅度变化,许多研究人员已经解决了这个问题。在本文中,我们审查了该领域中的一些最关键的里程碑,以及变压器架构如何纳入Visuol语言跨模型任务的整体趋势。此外,我们讨论了当前的局限性,并推测了我们发现迫在眉睫的一些前景。
translated by 谷歌翻译
Vision-and-language reasoning requires an understanding of visual concepts, language semantics, and, most importantly, the alignment and relationships between these two modalities. We thus propose the LXMERT (Learning Cross-Modality Encoder Representations from Transformers) framework to learn these vision-and-language connections. In LXMERT, we build a large-scale Transformer model that consists of three encoders: an object relationship encoder, a language encoder, and a cross-modality encoder. Next, to endow our model with the capability of connecting vision and language semantics, we pre-train the model with large amounts of image-and-sentence pairs, via five diverse representative pre-training tasks: masked language modeling, masked object prediction (feature regression and label classification), cross-modality matching, and image question answering. These tasks help in learning both intra-modality and cross-modality relationships. After fine-tuning from our pretrained parameters, our model achieves the state-of-the-art results on two visual question answering datasets (i.e., VQA and GQA). We also show the generalizability of our pretrained cross-modality model by adapting it to a challenging visual-reasoning task, NLVR 2 , and improve the previous best result by 22% absolute (54% to 76%). Lastly, we demonstrate detailed ablation studies to prove that both our novel model components and pretraining strategies significantly contribute to our strong results; and also present several attention visualizations for the different encoders. 1
translated by 谷歌翻译
Joint image-text embedding is the bedrock for most Visionand-Language (V+L) tasks, where multimodality inputs are simultaneously processed for joint visual and textual understanding. In this paper, we introduce UNITER, a UNiversal Image-TExt Representation, learned through large-scale pre-training over four image-text datasets (COCO, Visual Genome, Conceptual Captions, and SBU Captions), which can power heterogeneous downstream V+L tasks with joint multimodal embeddings. We design four pre-training tasks: Masked Language Modeling (MLM), Masked Region Modeling (MRM, with three variants), Image-Text Matching (ITM), and Word-Region Alignment (WRA). Different from previous work that applies joint random masking to both modalities, we use conditional masking on pre-training tasks (i.e., masked language/region modeling is conditioned on full observation of image/text). In addition to ITM for global image-text alignment, we also propose WRA via the use of Optimal Transport (OT) to explicitly encourage finegrained alignment between words and image regions during pre-training. Comprehensive analysis shows that both conditional masking and OTbased WRA contribute to better pre-training. We also conduct a thorough ablation study to find an optimal combination of pre-training tasks. Extensive experiments show that UNITER achieves new state of the art across six V+L tasks (over nine datasets), including Visual Question
translated by 谷歌翻译
深度学习技术导致了通用对象检测领域的显着突破,近年来产生了很多场景理解的任务。由于其强大的语义表示和应用于场景理解,场景图一直是研究的焦点。场景图生成(SGG)是指自动将图像映射到语义结构场景图中的任务,这需要正确标记检测到的对象及其关系。虽然这是一项具有挑战性的任务,但社区已经提出了许多SGG方法并取得了良好的效果。在本文中,我们对深度学习技术带来了近期成就的全面调查。我们审查了138个代表作品,涵盖了不同的输入方式,并系统地将现有的基于图像的SGG方法从特征提取和融合的角度进行了综述。我们试图通过全面的方式对现有的视觉关系检测方法进行连接和系统化现有的视觉关系检测方法,概述和解释SGG的机制和策略。最后,我们通过深入讨论当前存在的问题和未来的研究方向来完成这项调查。本调查将帮助读者更好地了解当前的研究状况和想法。
translated by 谷歌翻译
随着图像文本对的大量数据以及视觉和语言(V&L)任务的多样性,学者在该研究领域引入了大量的深度学习模型。此外,近年来,转移学习还显示出在计算机愿景中的巨大成功,例如图像分类,对象检测等以及在自然语言处理中以进行问答,机器翻译等的自然语言处理。继承转移学习的精神, V&L的研究工作已经在大规模数据集上设计了多种预训练技术,以增强下游任务的性能。本文的目的是提供当代V&L预审前模型的全面修订。特别是,我们对预处理的方法进行了分类和描述,以及最先进的视觉和语言预训练模型的摘要。此外,还提供了培训数据集和下游任务的列表,以进一步提高V&L预处理的观点。最后,我们决定采取进一步的一步,讨论众多未来研究的方向。
translated by 谷歌翻译
We study joint learning of Convolutional Neural Network (CNN) and Transformer for vision-language pre-training (VLPT) which aims to learn cross-modal alignments from millions of image-text pairs. State-of-the-art approaches extract salient image regions and align regions with words step-by-step. As region-based visual features usually represent parts of an image, it is challenging for existing visionlanguage models to fully understand the semantics from paired natural languages. In this paper, we propose SOHO to "See Out of tHe bOx" that takes a whole image as input, and learns vision-language representation in an endto-end manner. SOHO does not require bounding box annotations which enables inference 10 times faster than regionbased approaches. In particular, SOHO learns to extract comprehensive yet compact image features through a visual dictionary (VD) that facilitates cross-modal understanding. VD is designed to represent consistent visual abstractions of similar semantics. It is updated on-the-fly and utilized in our proposed pre-training task Masked Visual Modeling (MVM). We conduct experiments on four well-established vision-language tasks by following standard VLPT settings. In particular, SOHO achieves absolute gains of 2.0% R@1 score on MSCOCO text retrieval 5k test split, 1.5% accuracy on NLVR 2 test-P split, 6.7% accuracy on SNLI-VE test split, respectively.
translated by 谷歌翻译
场景图是一个场景的结构化表示,可以清楚地表达场景中对象之间的对象,属性和关系。随着计算机视觉技术继续发展,只需检测和识别图像中的对象,人们不再满足。相反,人们期待着对视觉场景更高的理解和推理。例如,给定图像,我们希望不仅检测和识别图像中的对象,还要知道对象之间的关系(视觉关系检测),并基于图像内容生成文本描述(图像标题)。或者,我们可能希望机器告诉我们图像中的小女孩正在做什么(视觉问题应答(VQA)),甚至从图像中移除狗并找到类似的图像(图像编辑和检索)等。这些任务需要更高水平的图像视觉任务的理解和推理。场景图只是场景理解的强大工具。因此,场景图引起了大量研究人员的注意力,相关的研究往往是跨模型,复杂,快速发展的。然而,目前没有对场景图的相对系统的调查。为此,本调查对现行场景图研究进行了全面调查。更具体地说,我们首先总结了场景图的一般定义,随后对场景图(SGG)和SGG的发电方法进行了全面和系统的讨论,借助于先验知识。然后,我们调查了场景图的主要应用,并汇总了最常用的数据集。最后,我们对场景图的未来发展提供了一些见解。我们相信这将是未来研究场景图的一个非常有帮助的基础。
translated by 谷歌翻译
场景图生成(SGG)是一项基本任务,旨在检测图像中对象之间的视觉关系。流行的SGG方法要求在培训集中给出所有对象类。这样的封闭设置限制了SGG的实际应用。在本文中,我们介绍了开放式视频范围场景图生成,这是一种新颖,现实且具有挑战性的环境,其中模型在一组基本对象类上进行了训练,但需要推断出看不见的目标对象类的关系。为此,我们提出了一种两步方法,该方法首先对大量的粗粒区域捕获数据进行预先培训,然后利用两种基于及时的技术来验证预先训练的模型而无需更新其参数。此外,我们的方法可以支持对完全看不见的对象类的推论,而现有方法无法处理。在三个基准数据集(视觉基因组,GQA和开放图像)上进行的广泛实验,我们的方法在OV-SGG的设置以及常规的封闭SGG上明显优于最近的强大SGG方法。
translated by 谷歌翻译
用于视觉语言表示学习的变压器已经引起了很多兴趣,并在视觉问题答案(VQA)和接地方面表现出了巨大的表现。但是,大多数显示出良好性能的系统在培训过程中仍然依赖于预训练的对象探测器,这将其适用性限制在可用于这些检测器的对象类中。为了减轻这种限制,以下论文着重于在变形金刚中的视觉问题答案的背景下进行弱监督的基础问题。该方法通过将每个视觉令牌分组在视觉编码器中,并使用语言自我发项层作为文本引导选择模块来利用胶囊,以在将它们转发到下一层之前掩盖它们。我们评估了针对挑战的GQA以及VQA帽数据集的VQA接地的方法。我们的实验表明:在从标准变压器体系结构中删除蒙版对象的信息的同时,胶囊的集成显着提高了此类系统的接地能力,并提供了与其他新的最先进的结果。在现场接近。
translated by 谷歌翻译
视觉问题应答(VQA)任务利用视觉图像和语言分析来回回答图像的文本问题。它是一个流行的研究课题,在过去十年中越来越多的现实应用。本文介绍了我们最近对AliceMind-MMU的研究(阿里巴巴的编码器 - 解码器来自Damo Academy - 多媒体理解的机器智能实验室),其比人类在VQA上获得相似甚至略微更好的结果。这是通过系统地改善VQA流水线来实现的,包括:(1)具有全面的视觉和文本特征表示的预培训; (2)与学习参加的有效跨模型互动; (3)一个新颖的知识挖掘框架,具有专门的专业专家模块,适用于复杂的VQA任务。处理不同类型的视觉问题,需要具有相应的专业知识在提高我们的VQA架构的表现方面发挥着重要作用,这取决于人力水平。进行了广泛的实验和分析,以证明新的研究工作的有效性。
translated by 谷歌翻译
This paper presents a detailed study of improving visual representations for vision language (VL) tasks and develops an improved object detection model to provide object-centric representations of images. Compared to the most widely used bottom-up and top-down model [2], the new model is bigger, better-designed for VL tasks, and pre-trained on much larger training corpora that combine multiple public annotated object detection datasets. Therefore, it can generate representations of a richer collection of visual objects and concepts. While previous VL research focuses mainly on improving the vision-language fusion model and leaves the object detection model improvement untouched, we show that visual features matter significantly in VL models. In our experiments we feed the visual features generated by the new object detection model into a Transformer-based VL fusion model OSCAR [21], and utilize an improved approach OSCAR+ to pre-train the VL model and fine-tune it on a wide range of downstream VL tasks. Our results show that the new visual features significantly improve the performance across all VL tasks, creating new state-of-the-art results on seven public benchmarks. Code, models and pre-extracted features are released at https://github.com/pzzhang/VinVL. ♥ Microsoft Corporation♠ University of Washington † indicates equal contributions.
translated by 谷歌翻译
From a visual scene containing multiple people, human is able to distinguish each individual given the context descriptions about what happened before, their mental/physical states or intentions, etc. Above ability heavily relies on human-centric commonsense knowledge and reasoning. For example, if asked to identify the "person who needs healing" in an image, we need to first know that they usually have injuries or suffering expressions, then find the corresponding visual clues before finally grounding the person. We present a new commonsense task, Human-centric Commonsense Grounding, that tests the models' ability to ground individuals given the context descriptions about what happened before, and their mental/physical states or intentions. We further create a benchmark, HumanCog, a dataset with 130k grounded commonsensical descriptions annotated on 67k images, covering diverse types of commonsense and visual scenes. We set up a context-object-aware method as a strong baseline that outperforms previous pre-trained and non-pretrained models. Further analysis demonstrates that rich visual commonsense and powerful integration of multi-modal commonsense are essential, which sheds light on future works. Data and code will be available https://github.com/Hxyou/HumanCog.
translated by 谷歌翻译
Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems. Among their salient benefits, Transformers enable modeling long dependencies between input sequence elements and support parallel processing of sequence as compared to recurrent networks e.g., Long short-term memory (LSTM). Different from convolutional networks, Transformers require minimal inductive biases for their design and are naturally suited as set-functions. Furthermore, the straightforward design of Transformers allows processing multiple modalities (e.g., images, videos, text and speech) using similar processing blocks and demonstrates excellent scalability to very large capacity networks and huge datasets. These strengths have led to exciting progress on a number of vision tasks using Transformer networks. This survey aims to provide a comprehensive overview of the Transformer models in the computer vision discipline. We start with an introduction to fundamental concepts behind the success of Transformers i.e., self-attention, large-scale pre-training, and bidirectional feature encoding. We then cover extensive applications of transformers in vision including popular recognition tasks (e.g., image classification, object detection, action recognition, and segmentation), generative modeling, multi-modal tasks (e.g., visual-question answering, visual reasoning, and visual grounding), video processing (e.g., activity recognition, video forecasting), low-level vision (e.g., image super-resolution, image enhancement, and colorization) and 3D analysis (e.g., point cloud classification and segmentation). We compare the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value. Finally, we provide an analysis on open research directions and possible future works. We hope this effort will ignite further interest in the community to solve current challenges towards the application of transformer models in computer vision.
translated by 谷歌翻译