Autonomous underwater vehicles (AUVs) are regularly used for deep ocean applications. Commonly, the autonomous navigation task is carried out by a fusion between two sensors: the inertial navigation system and the Doppler velocity log (DVL). The DVL operates by transmitting four acoustic beams to the sea floor, and once reflected back, the AUV velocity vector can be estimated. However, in real-life scenarios, such as an uneven seabed, sea creatures blocking the DVL's view and, roll/pitch maneuvers, the acoustic beams' reflection is resulting in a scenario known as DVL outage. Consequently, a velocity update is not available to bind the inertial solution drift. To cope with such situations, in this paper, we leverage our BeamsNet framework and propose a Set-Transformer-based BeamsNet (ST-BeamsNet) that utilizes inertial data readings and previous DVL velocity measurements to regress the current AUV velocity in case of a complete DVL outage. The proposed approach was evaluated using data from experiments held in the Mediterranean Sea with the Snapir AUV and was compared to a moving average (MA) estimator. Our ST-BeamsNet estimated the AUV velocity vector with an 8.547% speed error, which is 26% better than the MA approach.
translated by 谷歌翻译
自动水下车辆(AUV)执行各种应用,例如海底映射和水下结构健康监测。通常,由多普勒速度日志(DVL)提供的惯性导航系统用于提供车辆的导航解决方案。在这种融合中,DVL提供了AUV的速度向量,从而确定导航解决方案的准确性并有助于估计导航状态。本文提出了BeamsNet,这是一个端到端的深度学习框架,用于回归估计的DVL速度向量,以提高速度向量估算的准确性,并可以替代基于模型的方法。提出了两个版本的BeamsNet,其输入与网络不同。第一个使用当前的DVL光束测量和惯性传感器数据,而另一个仅利用DVL数据,对回归过程进行了当前和过去的DVL测量值。进行了模拟和海上实验,以验证相对于基于模型的方法的拟议学习方法。使用地中海的Snapir AUV进行了海洋实验,收集了大约四个小时的DVL和惯性传感器数据。我们的结果表明,提出的方法在估计DVL速度矢量方面取得了超过60%的改善。
translated by 谷歌翻译
惯性导航系统与全球导航卫星系统之间的融合经常用于许多平台,例如无人机,陆地车辆和船舶船只。融合通常是在基于模型的扩展卡尔曼过滤框架中进行的。过滤器的关键参数之一是过程噪声协方差。它负责实时解决方案的准确性,因为它考虑了车辆动力学不确定性和惯性传感器质量。在大多数情况下,过程噪声被认为是恒定的。然而,由于整个轨迹的车辆动力学和传感器测量变化,过程噪声协方差可能会发生变化。为了应对这种情况,文献中建议了几种基于自适应的Kalman过滤器。在本文中,我们提出了一个混合模型和基于学习的自适应导航过滤器。我们依靠基于模型的Kalman滤波器和设计深神网络模型来调整瞬时系统噪声协方差矩阵,仅基于惯性传感器读数。一旦学习了过程噪声协方差,就可以将其插入建立的基于模型的Kalman滤波器中。在推导了提出的混合框架后,提出了使用四极管的现场实验结果,并给出了与基于模型的自适应方法进行比较。我们表明,所提出的方法在位置误差中获得了25%的改善。此外,提出的混合学习方法可以在任何导航过滤器以及任何相关估计问题中使用。
translated by 谷歌翻译
Inertial and Doppler velocity log sensors are commonly used to provide the navigation solution for autonomous underwater vehicles (AUV). To this end, a nonlinear filter is adopted for the fusion task. The filter's process noise covariance matrix is critical for filter accuracy and robustness. While this matrix varies over time during the AUV mission, the filter assumes a constant matrix. Several models and learning approaches in the literature suggest tuning the process noise covariance during operation. In this work, we propose ProNet, a hybrid, adaptive process, noise estimation approach for a velocity-aided navigation filter. ProNet requires only the inertial sensor reading to regress the process noise covariance. Once learned, it is fed into the model-based navigation filter, resulting in a hybrid filter. Simulation results show the benefits of our approach compared to other models and learning adaptive approaches.
translated by 谷歌翻译
自动水下车辆(AUV)通常在许多水下应用中使用。最近,在文献中,多旋翼无人自动驾驶汽车(UAV)的使用引起了更多关注。通常,两个平台都采用惯性导航系统(INS)和协助传感器进行准确的导航解决方案。在AUV导航中,多普勒速度日志(DVL)主要用于帮助INS,而对于无人机,通常使用全球导航卫星系统(GNSS)接收器。辅助传感器和INS之间的融合需要在估计过程中定义步长参数。它负责解决方案频率更新,并最终导致其准确性。步长的选择在计算负载和导航性能之间构成了权衡。通常,与INS操作频率(数百个HERTZ)相比,帮助传感器更新频率要慢得多。对于大多数平台来说,这种高率是不必要的,特别是对于低动力学AUV。在这项工作中,提出了基于监督机器学习的自适应调整方案,以选择适当的INS步骤尺寸。为此,定义了一个速度误差,允许INS/DVL或INS/GNSS在亚最佳工作条件下起作用,并最大程度地减少计算负载。模拟和现场实验的结果显示了使用建议的方法的好处。此外,建议的框架可以应用于任何类型的传感器或平台之间的任何其他融合场景。
translated by 谷歌翻译
The performance of inertial navigation systems is largely dependent on the stable flow of external measurements and information to guarantee continuous filter updates and bind the inertial solution drift. Platforms in different operational environments may be prevented at some point from receiving external measurements, thus exposing their navigation solution to drift. Over the years, a wide variety of works have been proposed to overcome this shortcoming, by exploiting knowledge of the system current conditions and turning it into an applicable source of information to update the navigation filter. This paper aims to provide an extensive survey of information aided navigation, broadly classified into direct, indirect, and model aiding. Each approach is described by the notable works that implemented its concept, use cases, relevant state updates, and their corresponding measurement models. By matching the appropriate constraint to a given scenario, one will be able to improve the navigation solution accuracy, compensate for the lost information, and uncover certain internal states, that would otherwise remain unobservable.
translated by 谷歌翻译
对深度神经网络(DNN)进行了训练,以估计在城市区域驾驶的汽车速度,并输入来自低成本六轴惯性测量单元(IMU)的测量流。通过在配备了全球导航卫星系统(GNSS)实时运动学(RTK)定位设备和同步IMU的汽车中,通过驾驶以色列阿什杜德市(Ashdod)驾驶以色列市Ashdod市收集了三个小时的数据。使用以50 Hz的高速率获得的位置测量值计算了汽车速度的地面真实标签。提出了具有长短期内存层的DNN体系结构,以实现高频速度估计,以说明以前的输入历史记录和速度,加速度和角速度之间的非线性关系。制定了简化的死亡算法定位方案,以评估训练有素的模型,该模型提供了速度伪测量。训练有素的模型显示可在4分钟车程中大大提高位置准确性,而无需使用GNSS位置更新。
translated by 谷歌翻译
最近,数据驱动的惯性导航方法已经证明了它们使用训练有素的神经网络的能力,以获得来自惯性测量单元(IMU)测量的精确位置估计。在本文中,我们提出了一种用于惯性导航〜(CTIN)的基于鲁棒的基于变压器的网络,以准确地预测速度和轨迹。为此,我们首先通过本地和全局多头自我注意力增强基于Reset的编码器,以捕获来自IMU测量的空间上下文信息。然后,我们通过在变压器解码器中利用多针头注意,使用时间知识来熔化这些空间表示。最后,利用不确定性减少的多任务学习,以提高速度和轨迹的学习效率和预测准确性。通过广泛的实验在各种惯性数据集中〜(例如,ridi,oxiod,ronin,偶像和我们自己的),CTIN非常坚固,优于最先进的模型。
translated by 谷歌翻译
本文提出了一种轻巧,有效的校准神经网络模型,用于降低低成本微电力系统(MEMS)陀螺仪,并实时估算机器人的态度。关键思想是从惯性测量单元(IMU)测量的时间窗口中提取本地和全局特征,以动态地回归陀螺仪的输出补偿组件。遵循精心推导的数学校准模型,LGC-NET利用深度可分离的卷积捕获截面特征并减少网络模型参数。较大的内核注意力旨在更好地学习远程依赖性和特征表示。在EUROC和TUM-VI数据集中评估了所提出的算法,并在具有更轻巧模型结构的(看不见的)测试序列上实现了最先进的测试。尽管它不采用视觉传感器,但与我们的LGC-NET的估计取向与排名最高的视觉惯性探针系统相当。我们在:https://github.com/huazai665/lgc-net上进行开源方法
translated by 谷歌翻译
移动机器人用于工业,休闲和军事应用。在某些情况下,机器人导航解决方案仅依赖于惯性传感器,因此,导航解决方案会及时漂移。在本文中,我们提出了MORPI框架,这是一种移动机器人纯惯性方法。机器人没有以直线轨迹行进,而是以周期性运动轨迹移动,以实现峰值估计。以这种方式,使用经验公式来估计行进距离,而不是进行三个集成来计算经典惯性解决方案中的机器人位置。提出了两种类型的MORPI方法,其中一种方法基于加速度计和陀螺仪读数,而另一种仅基于陀螺仪。封闭形式的分析溶液被得出表明,与经典的纯惯性溶液相比,MORPI产生较低的位置误差。此外,为了评估所提出的方法,使用配备两种类型的惯性传感器的移动机器人进行现场实验。总共收集了143个轨迹,持续时间为75分钟并评估。结果表明使用我们的方法的好处。为了促进拟议方法的进一步开发,数据集和代码均可在https://github.com/ansfl/morpi上公开获得。
translated by 谷歌翻译
准确而健壮的本地化是移动代理的基本需求。视觉惯性进程(VIO)算法将信息从摄像机和惯性传感器中利用到估计位置和翻译。最近基于深度学习的VIO模型以数据驱动的方式提供姿势信息,而无需设计手工制作的算法,因此吸引了注意力。现有的基于学习的VIO模型依赖于经常性模型来融合多模式数据和过程传感器信号,这些模型很难训练并且不够有效。我们提出了一个基于学习的新型VIO框架,并有效地结合了视觉和惯性特征,以供各州估计。我们提出的模型也能够准确,稳健地估计,即使在具有挑战性的情况下,例如在阴天和充满水的地面上,对于传统的Vio算法而言,这很难提取视觉特征。实验验证了它在不同场景中的表现优于传统和基于学习的VIO基线。
translated by 谷歌翻译
本文解决了现场机器人动态运动下动态在线估计和3轴磁力计的硬铁和软铁偏置的动态在线估计和补偿问题,利用了3轴磁力计和3轴角度的偏置测量速率传感器。所提出的磁力计和角速度偏差估计器(MAVBE)利用了对经受角速度偏移的磁力计信号的非线性处理动态的15状态过程模型,同时估计9个磁力计偏置参数和3个角速率传感器偏置参数,在扩展卡尔曼过滤器框架。偏置参数局部可操作性在数值评估。偏置补偿信号与3轴加速度计信号一起用于估计偏置补偿磁力大地测量标题。与Chesapeake Bay,MD,MD,MD,MD,MD,MD,MD,MD,MD的数值模拟,实验室实验和全规模场试验中,评估了所提出的MAVBE方法的性能。对于所提出的Mavbe,(i)仪器态度不需要估计偏差,结果表明(ii)偏差是本地可观察的,(iii)偏差估计迅速收敛到真正的偏置参数,(iv)仅适用于适度的仪器偏压估计收敛需要激发,并且(v)对磁力计硬铁和柔软铁偏差的补偿显着提高了动态前线估计精度。
translated by 谷歌翻译
Visual Inertial Odometry (VIO) is one of the most established state estimation methods for mobile platforms. However, when visual tracking fails, VIO algorithms quickly diverge due to rapid error accumulation during inertial data integration. This error is typically modeled as a combination of additive Gaussian noise and a slowly changing bias which evolves as a random walk. In this work, we propose to train a neural network to learn the true bias evolution. We implement and compare two common sequential deep learning architectures: LSTMs and Transformers. Our approach follows from recent learning-based inertial estimators, but, instead of learning a motion model, we target IMU bias explicitly, which allows us to generalize to locomotion patterns unseen in training. We show that our proposed method improves state estimation in visually challenging situations across a wide range of motions by quadrupedal robots, walking humans, and drones. Our experiments show an average 15% reduction in drift rate, with much larger reductions when there is total vision failure. Importantly, we also demonstrate that models trained with one locomotion pattern (human walking) can be applied to another (quadruped robot trotting) without retraining.
translated by 谷歌翻译
由于低成本的惯性传感器误差积累,行人死的估算是一项具有挑战性的任务。最近的研究表明,深度学习方法可以在处理此问题时获得令人印象深刻的性能。在这封信中,我们使用基于深度学习的速度估计方法提出了惯性的进程。基于RES2NET模块和两个卷积块注意模块的深神经网络被利用,以恢复智能手机的水平速度矢量与原始惯性数据之间的潜在连接。我们的网络仅使用百分之五十的公共惯性探子仪数据集(RONIN)数据进行培训。然后,在Ronin测试数据集和另一个公共惯性探针数据集(OXIOD)上进行了验证。与传统的阶梯长度和基于标题的基于系统的算法相比,我们的方法将绝对翻译误差(ATE)降低了76%-86%。此外,与最先进的深度学习方法(Ronin)相比,我们的方法将其ATE提高了6%-31.4%。
translated by 谷歌翻译
A reliable self-contained navigation system is essential for autonomous vehicles. Based on our previous study on Wheel-INS \cite{niu2019}, a wheel-mounted inertial measurement unit (Wheel-IMU)-based dead reckoning (DR) system, in this paper, we propose a multiple IMUs-based DR solution for the wheeled robots. The IMUs are mounted at different places of the wheeled vehicles to acquire various dynamic information. In particular, at least one IMU has to be mounted at the wheel to measure the wheel velocity and take advantages of the rotation modulation. The system is implemented through a distributed extended Kalman filter structure where each subsystem (corresponding to each IMU) retains and updates its own states separately. The relative position constraints between the multiple IMUs are exploited to further limit the error drift and improve the system robustness. Particularly, we present the DR systems using dual Wheel-IMUs, one Wheel-IMU plus one vehicle body-mounted IMU (Body-IMU), and dual Wheel-IMUs plus one Body-IMU as examples for analysis and comparison. Field tests illustrate that the proposed multi-IMU DR system outperforms the single Wheel-INS in terms of both positioning and heading accuracy. By comparing with the centralized filter, the proposed distributed filter shows unimportant accuracy degradation while holds significant computation efficiency. Moreover, among the three multi-IMU configurations, the one Body-IMU plus one Wheel-IMU design obtains the minimum drift rate. The position drift rates of the three configurations are 0.82\% (dual Wheel-IMUs), 0.69\% (one Body-IMU plus one Wheel-IMU), and 0.73\% (dual Wheel-IMUs plus one Body-IMU), respectively.
translated by 谷歌翻译
近年来,基于数据驱动的导航和定位方法吸收了注意力,并且在准确性和效率方面优于其所有竞争对手方法。本文介绍了一种称为IMUNET的新体系结构,该架构是对边缘设备实现的位置估算的准确和有效效率,该估算接收了一系列RAW IMU测量。该体系结构已与最新的CNN网络的一维版本进行了比较,该网络最近介绍了用于Edge设备实现的精确性和效率。此外,已经提出了一种使用IMU传感器和Google Arcore API收集数据集的新方法,并已记录了公开可用的数据集。使用四个不同的数据集以及提出的数据集和实际设备实现的全面评估已经证明了体系结构的性能。 Pytorch和Tensorflow框架以及Android应用程序代码中的所有代码都已共享,以改善进一​​步的研究。
translated by 谷歌翻译
移动设备上的人类活动识别(HAR)已证明可以通过从用户的惯性测量单元(IMU)生成的数据中学到的轻量级神经模型来实现。基于Instanced HAR的大多数方法都使用卷积神经网络(CNN),长期记忆(LSTMS)或两者组合以实现实时性能来实现最新结果。最近,在语言处理域中,然后在视觉域中的变形金刚体系结构进一步推动了对古典体系结构的最先进。但是,这种变形金刚在计算资源中是重量级的,它不适合在Pervasive Computing域中找到HAR的嵌入式应用程序。在这项研究中,我们提出了人类活动识别变压器(HART),这是一种轻巧的,传感器的变压器结构,已专门适用于嵌入移动设备上的IMU的域。我们对HAR任务的实验具有几个公开可用的数据集,表明HART使用较少的每秒浮点操作(FLOPS)和参数,同时超过了当前的最新结果。此外,我们在各种体系结构中对它们在异质环境中的性能进行了评估,并表明我们的模型可以更好地推广到不同的感应设备或体内位置。
translated by 谷歌翻译
我们都取决于流动性,车辆运输会影响我们大多数人的日常生活。因此,预测道路网络中流量状态的能力是一项重要的功能和具有挑战性的任务。流量数据通常是从部署在道路网络中的传感器获得的。关于时空图神经网络的最新建议通过将流量数据建模为扩散过程,在交通数据中建模复杂的时空相关性方面取得了巨大进展。但是,直观地,流量数据包含两种不同类型的隐藏时间序列信号,即扩散信号和固有信号。不幸的是,几乎所有以前的作品都将交通信号完全视为扩散的结果,同时忽略了固有的信号,这会对模型性能产生负面影响。为了提高建模性能,我们提出了一种新型的脱钩时空框架(DSTF),该框架以数据驱动的方式将扩散和固有的交通信息分开,其中包含独特的估计门和残差分解机制。分离的信号随后可以通过扩散和固有模块分别处理。此外,我们提出了DSTF的实例化,分离的动态时空图神经网络(D2STGNN),可捕获时空相关性,还具有动态图学习模块,该模块针对学习流量网络动态特征的学习。使用四个现实世界流量数据集进行的广泛实验表明,该框架能够推进最先进的框架。
translated by 谷歌翻译
由于道路上越来越多的车辆,城市的交通管理已成为一个主要问题。智能交通系统(其)可以帮助城市交通管理者通过提供准确的流量预测来解决问题。为此,它需要一种可靠的业务预测算法,其可以基于过去和当前的业务数据在多个时间步骤中提供准确的流量预测。近年来,已经提出了许多不同的交通预测方法,这些方法已经证明了它们在准确性方面的有效性。然而,这些方法中的大多数都认为仅包括空间信息或时间信息并忽略了其他的效果。在本文中,为了解决上述问题,使用空间和时间依赖性开发了基于深度学习的方法。要考虑时空依赖项,基于交通相似度和距离等属性选择特定即时的附近的道路传感器。使用潜在空间映射的概念交叉连接两个预训练的深度自动编码器,并且使用从所选附近传感器的流量数据培训所得模型作为输入。使用从洛杉矶和湾区的不同高速公路上安装的Loop Detector传感器收集的现实世界交通数据培训了所提出的深度学习方法。来自加利福尼亚州运输绩效测量系统(PEMS)的网络门户网站自由提供交通数据。通过将其与许多机/深度学习方法进行比较来验证所提出的方法的有效性。已经发现,所提出的方法即使对于比其他技术最小的误差,即使超过60分钟的前方预测也提供了准确的流量预测结果。
translated by 谷歌翻译
侧扫声纳强度编码有关海床表面正常变化的信息。但是,其他因素(例如海底几何形状及其材料组成)也会影响回流强度。可以建模这些强度从向前方向上的变化从从测深图和物理特性到测量强度的表面正常的变化,或者可以使用逆模型,该模型从强度开始并模拟表面正常。在这里,我们使用一个逆模型,该模型利用深度学习能够从数据中学习的能力;卷积神经网络用于估计侧扫的正常表面。因此,海床的内部特性仅是隐式学习的。一旦估算了此信息,就可以通过优化框架重建测深图,该框架还包括高度计读数,以提供稀疏的深度轮廓作为约束。最近提出了隐式神经表示学习,以代表这种优化框架中的测深图。在本文中,我们使用神经网络来表示地图并在高度计点的约束和侧can的估计表面正常状态下进行优化。通过从几个侧扫线的不同角度融合多个观测值,通过优化改善了估计的结果。我们通过使用大型侧扫调查的侧扫数据重建高质量的测深,通过重建高质量的测深,证明了该方法的效率和可伸缩性。我们比较了提出的数据驱动的逆模型方法,该方法将侧扫形成前向兰伯特模型。我们通过将每个重建的质量与由多光束传感器构建的数据进行比较来评估它的质量。因此,我们能够讨论每种方法的优点和缺点。
translated by 谷歌翻译