我们将研究扩展到横断面动量交易策略。我们的主要结果是我们的新颖排名算法,天真的贝叶斯资产排名(NBAR),我们用来选择资产亚集的亚群来从标准普尔500指数进行交易。我们执行特征表示从径向基函数网络转移到凝乳和乳清(CAW)多元回归模型,该模型利用响应变量之间的相关性来提高预测精度。 NBAR通过计算单个资产排名高于其他投资组合成分的顺序后验概率来对此回归输出进行排名。与加权多数算法不同,该算法通过确保分配给每个专家的权重从不低于最低阈值来处理非平稳性,我们的排名算法使以前表现不佳的专家在开始表现良好时具有增加权重的专家。我们的算法胜过一项策略,该策略将在测试期间的指数欣赏205%,但持续持续的标准普尔500指数却是事后观察。它还胜过回归的基线,即CAW模型。
translated by 谷歌翻译
在金融时序预测时,我们调查特征选择,非线性建模和在线学习的好处。我们考虑在线学习的顺序和持续学习子类型。我们进行的实验表明,以径向基函数网络的形式,在线转移学习存在益处,超出了递归最小二乘模型的顺序更新。我们表明,利用聚类算法构建核克矩阵的径向基函数网络比将每个训练矢量视为单独的基本函数,与内核脊回归发生的更有益。我们展示了定量程序来确定径向基函数网络的结构非常结构。最后,我们对金融时间序列的日志回报进行了实验,并表明在线学习模型,特别是径向基函数网络,能够优于随机的散步基线,而离线学习模型努力这样做。
translated by 谷歌翻译
我们探索在线感应转移学习,通过由高斯混合模型隐藏的加工单元形成的径向基函数网络转移到直接,经常性的加固学习剂。该代理商在实验中进行工作,交易主要的现货市场货币对,我们准确地占交易和资金成本。这些利润和损失来源,包括货币市场发生的价格趋势,通过二次实用程序向代理商提供,他们将直接学习瞄准职位。我们通过学习在在线转移学习背景下瞄准风险职位之前提前改进工作。我们的代理商实现了0.52的年度组合信息比例,复合返回率为9.3%,净的执行和资金成本,超过7年的测试集;尽管在交易成本在统计上最贵的价格是最昂贵的,但仍然迫使模型在5点在5点在5月5日的交易日结束。
translated by 谷歌翻译
我们展示了在线转移学习作为数字资产交易代理的应用。该代理使用回波状态网络的形式使用强大的特征空间表示,其输出可用于直接,经常性的强化学习代理。代理商学会交易XBTUSD(比特币与美元)Perpetual Swap衍生品在Bitmex上合同。它学会在五个微微采样的数据上贸易盘中,避免过度交易,捕获资金利润,也能够预测市场的方向。总体而言,我们的加密代理商实现了350%的总回报,交易成本净额超过五年,其中71%是资金利润。它达到的年度信息比率为1.46。
translated by 谷歌翻译
我们正式介绍了一个时序统计学习方法,称为自适应学习,能够在嘈杂的环境中处理模型选择,采样外预测和解释。通过仿真研究,我们证明该方法可以在条件切换的情况下呈现传统的模型选择技术,例如AIC和BIC,以及促进数据生成过程时的窗口尺寸确定是时变的。根据性地,我们使用该方法来预测S&P 500跨越多个预测视野,从VIX曲线和产量曲线采用信息。我们发现自适应学习模型通常与,如果不是更好的话,如果不是更好的参数模型,在MSE方面评估,同时也在交叉验证下表现优于效果。我们在2020年市场崩盘期间提出了学习结果的财务应用和对学习制度的解释。这些研究可以在统计方向和金融应用方面延伸。
translated by 谷歌翻译
预测组合在预测社区中蓬勃发展,近年来,已经成为预测研究和活动主流的一部分。现在,由单个(目标)系列产生的多个预测组合通过整合来自不同来源收集的信息,从而提高准确性,从而减轻了识别单个“最佳”预测的风险。组合方案已从没有估计的简单组合方法演变为涉及时间变化的权重,非线性组合,组件之间的相关性和交叉学习的复杂方法。它们包括结合点预测和结合概率预测。本文提供了有关预测组合的广泛文献的最新评论,并参考可用的开源软件实施。我们讨论了各种方法的潜在和局限性,并突出了这些思想如何随着时间的推移而发展。还调查了有关预测组合实用性的一些重要问题。最后,我们以当前的研究差距和未来研究的潜在见解得出结论。
translated by 谷歌翻译
致力于金融时序预测的机器学习算法在过去几年中获得了很多兴趣。一个难度在于在几种算法之间选择,因为它们的估计精度可能是不稳定的。在本文中,我们建议应用基于在线聚合的预测模型,组合了多种机器学习技术来构建动态地适应市场条件的投资组合。我们将该聚合技术应用于建设对其财务特征的长期股票的建设,我们展示了在性能和稳定性方面的聚集占单算法。
translated by 谷歌翻译
We introduce an ensemble learning method based on Gaussian Process Regression (GPR) for predicting conditional expected stock returns given stock-level and macro-economic information. Our ensemble learning approach significantly reduces the computational complexity inherent in GPR inference and lends itself to general online learning tasks. We conduct an empirical analysis on a large cross-section of US stocks from 1962 to 2016. We find that our method dominates existing machine learning models statistically and economically in terms of out-of-sample $R$-squared and Sharpe ratio of prediction-sorted portfolios. Exploiting the Bayesian nature of GPR, we introduce the mean-variance optimal portfolio with respect to the predictive uncertainty distribution of the expected stock returns. It appeals to an uncertainty averse investor and significantly dominates the equal- and value-weighted prediction-sorted portfolios, which outperform the S&P 500.
translated by 谷歌翻译
Concept drift primarily refers to an online supervised learning scenario when the relation between the input data and the target variable changes over time. Assuming a general knowledge of supervised learning in this paper we characterize adaptive learning process, categorize existing strategies for handling concept drift, overview the most representative, distinct and popular techniques and algorithms, discuss evaluation methodology of adaptive algorithms, and present a set of illustrative applications. The survey covers the different facets of concept drift in an integrated way to reflect on the existing scattered state-of-the-art. Thus, it aims at providing a comprehensive introduction to the concept drift adaptation for researchers, industry analysts and practitioners.
translated by 谷歌翻译
股票市场的不可预测性和波动性使得使用任何广义计划赚取可观的利润具有挑战性。许多先前的研究尝试了不同的技术来建立机器学习模型,这可以通过进行实时交易来在美国股票市场赚取可观的利润。但是,很少有研究重点是在特定交易期找到最佳功能的重要性。我们的顶级方法使用该性能将功能从总共148缩小到大约30。此外,在每次训练我们的机器学习模型之前,都会动态选择前25个功能。它与四个分类器一起使用合奏学习:高斯天真贝叶斯,决策树,带L1正则化的逻辑回归和随机梯度下降,以决定是长时间还是短的特定股票。我们的最佳模型在2011年7月至2019年1月之间进行的每日交易,可获得54.35%的利润。最后,我们的工作表明,加权分类器的混合物的表现要比任何在股票市场做出交易决策的个人预测指标更好。
translated by 谷歌翻译
本文旨在提出和应用机器学习方法,以使用其组件的历史回报数据来分析交易所交易基金(ETF)的回报方向,从而通过交易算法有助于制定投资策略决策。从方法论方面,除了算法误差指标外,还使用来自巴西和美国市场的标准数据集应用了回归和分类模型。在研究结果方面,它们进行了分析并将其与NA \“ Ive”预测和购买和持有技术在同一时期获得的收益进行了比较。就风险和回报而言,模型的性能大多要比控制指标重点是线性回归模型和通过逻辑回归的分类模型,支持向量机(使用LinearsVC模型),高斯天真的贝叶斯和K-Nearest邻居,在某些数据集中,在某些数据集中,回报超过了两次,并且夏普比率高达购买和持有控制模型的比率四倍。
translated by 谷歌翻译
动量策略是替代投资的重要组成部分,是商品交易顾问(CTA)的核心。然而,这些策略已被发现难以调整市场条件的快速变化,例如在2020年市场崩溃期间。特别是,在动量转向点之后,在趋势从上升趋势(下降趋势)逆转到下降趋势(上升趋势),时间序列动量(TSMOM)策略容易发生不良赌注。为了提高对政权变更的响应,我们介绍了一种新颖的方法,在那里我们将在线切换点检测(CPD)模块插入深势网络(DMN)[1904.04912]管道,它使用LSTM深度学习架构同时学习趋势估算与定位尺寸。此外,我们的模型能够优化它的平衡1)延迟延期的速度策略,它利用持续趋势,但没有过度反应到本地化价格移动,而且2)通过快速翻转其位置,这是一种快速平均转换策略制度,然后再次将其交换为利用本地化的价格。我们的CPD模块输出ChangePoint位置和严重性分数,允许我们的模型以数据驱动的方式学习响应变化的不平衡或更小,更局部化的变换点。在1995 - 2020年期间,在1995 - 2020年期间,添加CPD模块的添加导致夏普率的提高三分之一。该模块在显着的非间抗性期间特别有益,特别是在最近几年(2015-2020)中,性能提升大约三分之二。随着传统的动量策略在此期间的表现不佳,这很有趣。
translated by 谷歌翻译
本文提出了基于深度Q学习的金融投资组合交易深增强学习算法。该算法能够从任何大小的横截面数据集交易高维投资组合,其可以包括资产中的数据间隙和非唯一历史长度。我们通过对每种环境的一个资产进行采样,在每种环境中对所有环境进行投资来顺序设置环境,并通过“资产集合”的平均返回,从而奖励资产的退货和现金预订。这强制执行代理以战略性地将资本分配给其预测以上平均值的资产。我们在采样外部分析中应用我们的方法,以48美国股票的组合设置,在股票中的数量和交易成本水平中,在十辆高达500股的股票数量上变化。平均优势算法通过仅为所有投资组合使用一个超参数设置,通过大型边距所考虑被动和活动基准投资策略。
translated by 谷歌翻译
The stock market prediction has been a traditional yet complex problem researched within diverse research areas and application domains due to its non-linear, highly volatile and complex nature. Existing surveys on stock market prediction often focus on traditional machine learning methods instead of deep learning methods. Deep learning has dominated many domains, gained much success and popularity in recent years in stock market prediction. This motivates us to provide a structured and comprehensive overview of the research on stock market prediction focusing on deep learning techniques. We present four elaborated subtasks of stock market prediction and propose a novel taxonomy to summarize the state-of-the-art models based on deep neural networks from 2011 to 2022. In addition, we also provide detailed statistics on the datasets and evaluation metrics commonly used in the stock market. Finally, we highlight some open issues and point out several future directions by sharing some new perspectives on stock market prediction.
translated by 谷歌翻译
由于数据量增加,金融业的快速变化已经彻底改变了数据处理和数据分析的技术,并带来了新的理论和计算挑战。与古典随机控制理论和解决财务决策问题的其他分析方法相比,解决模型假设的财务决策问题,强化学习(RL)的新发展能够充分利用具有更少模型假设的大量财务数据并改善复杂的金融环境中的决策。该调查纸目的旨在审查最近的资金途径的发展和使用RL方法。我们介绍了马尔可夫决策过程,这是许多常用的RL方法的设置。然后引入各种算法,重点介绍不需要任何模型假设的基于价值和基于策略的方法。连接是用神经网络进行的,以扩展框架以包含深的RL算法。我们的调查通过讨论了这些RL算法在金融中各种决策问题中的应用,包括最佳执行,投资组合优化,期权定价和对冲,市场制作,智能订单路由和Robo-Awaring。
translated by 谷歌翻译
预测基金绩效对投资者和基金经理都是有益的,但这是一项艰巨的任务。在本文中,我们测试了深度学习模型是否比传统统计技术更准确地预测基金绩效。基金绩效通常通过Sharpe比率进行评估,该比例代表了风险调整的绩效,以确保基金之间有意义的可比性。我们根据每月收益率数据序列数据计算了年度夏普比率,该数据的时间序列数据为600多个投资于美国上市大型股票的开放式共同基金投资。我们发现,经过现代贝叶斯优化训练的长期短期记忆(LSTM)和封闭式复发单元(GRUS)深度学习方法比传统统计量相比,预测基金的Sharpe比率更高。结合了LSTM和GRU的预测的合奏方法,可以实现所有模型的最佳性能。有证据表明,深度学习和结合能提供有希望的解决方案,以应对基金绩效预测的挑战。
translated by 谷歌翻译
Solving portfolio management problems using deep reinforcement learning has been getting much attention in finance for a few years. We have proposed a new method using experts signals and historical price data to feed into our reinforcement learning framework. Although experts signals have been used in previous works in the field of finance, as far as we know, it is the first time this method, in tandem with deep RL, is used to solve the financial portfolio management problem. Our proposed framework consists of a convolutional network for aggregating signals, another convolutional network for historical price data, and a vanilla network. We used the Proximal Policy Optimization algorithm as the agent to process the reward and take action in the environment. The results suggested that, on average, our framework could gain 90 percent of the profit earned by the best expert.
translated by 谷歌翻译
在本文中,我们考虑了使用相同的预测精度测试程序在横截面依赖下实现了实现波动率测量的预测评估。在预测实现挥发性时,我们根据增强横截面评估模型的预测精度。在相等预测精度的零假设下,所采用的基准模型是标准的HAR模型,而在非相同的预测精度的替代方案下,预测模型是通过套索缩收估计的增强的HAR模型。我们通过结合测量误差校正以及横截面跳转分量测量来研究预报对模型规范的敏感性。使用数值实现评估模型的样本外预测评估。
translated by 谷歌翻译
本文介绍了一个集成预测方法,通过减少特征和模型选择假设来显示M4Competitiation数据集的强劲结果,称为甜甜圈(不利用人为假设)。我们的假设减少,主要由自动生成的功能和更多样化的集合模型组成,显着优于Montero-Manso等人的统计特征的集合方法FForma。 (2020)。此外,我们用长短期内存网络(LSTM)AutoEncoder调查特征提取,并发现此类特征包含传统统计特征方法未捕获的重要信息。合奏加权模型使用LSTM功能和统计功能准确地结合模型。特征重要性和交互的分析表明,单独的统计数据的LSTM特征略有优势。聚类分析表明,不同的基本LSTM功能与大多数统计特征不同。我们还发现,通过使用新模型增强合奏来增加加权模型的解决方案空间是加权模型学习使用的东西,解释了准确性的一部分。最后,我们为集合的最佳组合和选择提供了正式的前后事实分析,通过M4数据集的线性优化量化差异。我们还包括一个简短的证据,模型组合优于模型选择,后者。
translated by 谷歌翻译
The literature on machine learning in the context of data streams is vast and growing. However, many of the defining assumptions regarding data-stream learning tasks are too strong to hold in practice, or are even contradictory such that they cannot be met in the contexts of supervised learning. Algorithms are chosen and designed based on criteria which are often not clearly stated, for problem settings not clearly defined, tested in unrealistic settings, and/or in isolation from related approaches in the wider literature. This puts into question the potential for real-world impact of many approaches conceived in such contexts, and risks propagating a misguided research focus. We propose to tackle these issues by reformulating the fundamental definitions and settings of supervised data-stream learning with regard to contemporary considerations of concept drift and temporal dependence; and we take a fresh look at what constitutes a supervised data-stream learning task, and a reconsideration of algorithms that may be applied to tackle such tasks. Through and in reflection of this formulation and overview, helped by an informal survey of industrial players dealing with real-world data streams, we provide recommendations. Our main emphasis is that learning from data streams does not impose a single-pass or online-learning approach, or any particular learning regime; and any constraints on memory and time are not specific to streaming. Meanwhile, there exist established techniques for dealing with temporal dependence and concept drift, in other areas of the literature. For the data streams community, we thus encourage a shift in research focus, from dealing with often-artificial constraints and assumptions on the learning mode, to issues such as robustness, privacy, and interpretability which are increasingly relevant to learning in data streams in academic and industrial settings.
translated by 谷歌翻译