The abundance of dark matter (DM) subhalos orbiting a host galaxy is a generic prediction of the cosmological framework, and is a promising way to constrain the nature of DM. In this paper, we investigate the use of machine learning-based tools to quantify the magnitude of phase-space perturbations caused by the passage of DM subhalos. A simple binary classifier and an anomaly detection model are proposed to estimate if stars or star particles close to DM subhalos are statistically detectable in simulations. The simulated datasets are three Milky Way-like galaxies and nine synthetic Gaia DR2 surveys derived from these. Firstly, we find that the anomaly detection algorithm, trained on a simulated galaxy with full 6D kinematic observables and applied on another galaxy, is nontrivially sensitive to the DM subhalo population. On the other hand, the classification-based approach is not sufficiently sensitive due to the extremely low statistics of signal stars for supervised training. Finally, the sensitivity of both algorithms in the Gaia-like surveys is negligible. The enormous size of the Gaia dataset motivates the further development of scalable and accurate data analysis methods that could be used to select potential regions of interest for DM searches to ultimately constrain the Milky Way's subhalo mass function, as well as simulations where to study the sensitivity of such methods under different signal hypotheses.
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
我们描述了作为黑暗机器倡议和LES Houches 2019年物理学研讨会进行的数据挑战的结果。挑战的目标是使用无监督机器学习算法检测LHC新物理学的信号。首先,我们提出了如何实现异常分数以在LHC搜索中定义独立于模型的信号区域。我们定义并描述了一个大型基准数据集,由> 10亿美元的Muton-Proton碰撞,其中包含> 10亿美元的模拟LHC事件组成。然后,我们在数据挑战的背景下审查了各种异常检测和密度估计算法,我们在一组现实分析环境中测量了它们的性能。我们绘制了一些有用的结论,可以帮助开发无监督的新物理搜索在LHC的第三次运行期间,并为我们的基准数据集提供用于HTTPS://www.phenomldata.org的未来研究。重现分析的代码在https://github.com/bostdiek/darkmachines-unsupervisedChallenge提供。
translated by 谷歌翻译
机器学习在加强和加速寻求新基本物理学方面发挥着至关重要的作用。我们审查了新物理学的机器学习方法和应用中,在地面高能量物理实验的背景下,包括大型强子撞机,罕见的事件搜索和中微生实验。虽然机器学习在这些领域拥有悠久的历史,但深入学习革命(2010年代初)就研究的范围和雄心而产生了定性转变。这些现代化的机器学习发展是本综述的重点。
translated by 谷歌翻译
银河系的半分析模型(SAM)的关键要素是晕光的质量组装历史,该历史是在树结构中编码的。构建光环合并历史的最常用方法是基于高分辨率,计算密集的N体模拟的结果。我们显示机器学习(ML)技术,特别是生成的对抗网络(GAN),是一种有希望的新工具,可以通过适度的计算成本解决此问题,并保留模拟中合并树的最佳功能。我们通过使用两个Halo Finder-Tree-Tree Builder算法构建的星系及其环境(EAGLE)模拟套件的有限的合并树样品来训练我们的GAN模型:Subfind-D-D-Trees和Rockstar-Consistentrees。我们的GAN模型成功地学习了具有高时间分辨率的结构良好的合并树结构,并在考虑训练过程中最多三个变量时,重现用于训练的合并树样品的统计特征。这些输入(我们的GAN模型)也学到了其表示,是光环祖细胞的质量和最终的后代,祖细胞类型(主晕或卫星)以及祖细胞与主分支中的祖先的距离。后两个输入的包含大大改善了对光环质量生长历史的最终学识,尤其是对于子发现样的ML树。当将ML合并树的同等大小的样本与Eagle模拟的样品进行比较时,我们发现了与子发现样的ML树的更好一致性。最后,我们的基于GAN的框架可用于构建低和中间质量光环的合并历史,这是宇宙学模拟中最丰富的。
translated by 谷歌翻译
ASTROMYRY - 天体物体的职位和运动的精确测量 - 已成为一个有希望的大道,用于在我们的银河系中表征暗物质人口。通过利用基于仿真的推断和神经网络架构的最近进步,我们介绍了一种新的方法来搜索天球暗物质引起的天体辐射数据集中的重力透镜签名。我们基于神经似然比估计的方法显示出与基于两点相关统计的现有方法相比,与测量噪声相比,对冷暗物质人群的敏感性显着提高了敏感性。我们通过将其稳健而言,展示了我们的方法的真实可行性,并且在天体测量中预期的非普通建模以及未拼模型的噪声功能。这使得机器学习作为一种强大的工具,用于使用artromicric数据表征暗物质。
translated by 谷歌翻译
从间接检测实验中寻找暗物质湮灭的间接检测实验的解释需要计算昂贵的宇宙射线传播模拟。在这项工作中,我们提出了一种基于经常性神经网络的新方法,可显着加速二次和暗物质银宇射线反滴角的模拟,同时实现优异的准确性。这种方法允许在宇宙射线传播模型的滋扰参数上进行高效的分析或边缘化,以便为各种暗物质模型进行参数扫描。我们确定重要的采样,具体适用于确保仅在训练有素的参数区域中评估网络。我们使用最新AMS-02 Antiproton数据在几种模型的弱相互作用的大规模粒子上呈现导出的限制。与传统方法相比,全训练网络与此工作一起作为Darkraynet释放,并通过至少两个数量级来实现运行时的加速。
translated by 谷歌翻译
强烈的引力透镜已成为一种有前途的方法,用于探测亚半乳尺度上的暗物质模型。最近的工作提出了Subhalo有效密度斜率比常用的Subhalo质量功能更可靠。 subhalo有效密度斜率是一个独立于对基础密度曲线的假设的测量值,可以通过传统的采样方法来推断单个Subhalos。为了超越单个Subhalo测量,我们利用机器学习的最新进展,并引入神经似然比估计器来推断Subhalos人群的有效密度斜率。我们证明我们的方法能够利用多个Subhalos(内部和跨多个图像)的统计能力来区分不同Subhalo种群的特征。神经似然比估计量对传统抽样的估计值所需的计算效率可以实现对暗物质遗传的统计研究,并且特别有用,因为我们希望从即将进行的调查中涌入强镜头系统。
translated by 谷歌翻译
我们将图形神经网络训练来自小工具N体模拟的光晕目录的神经网络,以执行宇宙学参数的无现场级别可能的推断。目录包含$ \ Lessim $ 5,000 HAROS带质量$ \ gtrsim 10^{10} 〜h^{ - 1} m_ \ odot $,定期卷为$(25〜H^{ - 1} {\ rm mpc}){\ rm mpc}) ^3 $;目录中的每个光环都具有多种特性,例如位置,质量,速度,浓度和最大圆速度。我们的模型构建为置换,翻译和旋转的不变性,不施加最低限度的规模来提取信息,并能够以平均值来推断$ \ omega _ {\ rm m} $和$ \ sigma_8 $的值$ \ sim6 \%$的相对误差分别使用位置加上速度和位置加上质量。更重要的是,我们发现我们的模型非常强大:他们可以推断出使用数千个N-n-Body模拟的Halo目录进行测试时,使用五个不同的N-进行测试时,在使用Halo目录进行测试时,$ \ omega _ {\ rm m} $和$ \ sigma_8 $身体代码:算盘,Cubep $^3 $ M,Enzo,PKDGrav3和Ramses。令人惊讶的是,经过培训的模型推断$ \ omega _ {\ rm m} $在对数千个最先进的骆驼水力动力模拟进行测试时也可以使用,该模拟使用四个不同的代码和子网格物理实现。使用诸如浓度和最大循环速度之类的光环特性允许我们的模型提取更多信息,而牺牲了模型的鲁棒性。这可能会发生,因为不同的N体代码不会在与这些参数相对应的相关尺度上收敛。
translated by 谷歌翻译
从限制黑暗部门的暗物质颗粒的生产可能导致许多新颖的实验签名。根据理论的细节,质子 - 质子碰撞中的黑暗夸克生产可能导致颗粒的半衰期:黑暗强度的准直喷雾,其中颗粒碰撞器实验只有一些。实验签名的特征在于,具有与喷射器的可见部件相结合的重建缺失的动量。这种复杂的拓扑对检测器效率低下和错误重建敏感,从而产生人为缺失的势头。通过这项工作,我们提出了一种信号不可知的策略来拒绝普通喷射,并通过异常检测技术鉴定半衰期喷射。具有喷射子结构变量的深度神经自动化器网络作为输入,证明了对分析异常喷射的非常有用。该研究重点介绍了半意射流签名;然而,该技术可以适用于任何新的物理模型,该模型预测来自非SM粒子的喷射器的签名。
translated by 谷歌翻译
在整个宇宙学模拟中,初始条件中的物质密度场的性质对今天形成的结构的特征具有决定性的影响。在本文中,我们使用随机森林分类算法来推断暗物质颗粒是否追溯到初始条件,最终将在肿块上高于一些阈值的暗物质卤素。该问题可能被构成为二进制分类任务,其中物质密度字段的初始条件映射到由光环发现者程序提供的分类标签。我们的研究结果表明,随机森林是有效的工具,无法在不运行完整过程的情况下预测宇宙学模拟的输出。在将来可能使用这些技术来降低计算时间并更有效地探索不同暗物质/暗能候选对宇宙结构的形成的影响。
translated by 谷歌翻译
了解晕星连接是基本的,以提高我们对暗物质的性质和性质的知识。在这项工作中,我们构建一个模型,鉴于IT主机的星系的位置,速度,恒星群体和半径的位置。为了捕获来自星系属性的相关性及其相位空间的相关信息,我们使用图形神经网络(GNN),该网络设计用于使用不规则和稀疏数据。我们从宇宙学和天体物理学中培训了我们在Galaxies上的模型,从宇宙学和天体物理学与机器学习模拟(骆驼)项目。我们的模型,占宇宙学和天体物理的不确定性,能够用$ \ SIM 0.2欧元的准确度来限制晕群。此外,在一套模拟上培训的GNN能够在用利用不同的代码的模拟上进行测试时保留其精度的一部分精度。 GNN的Pytorch几何实现在HTTPS://github.com/pablovd/halographnet上公开可用于github上
translated by 谷歌翻译
我们开发了卷积神经网络(CNNS),快速,直接从无线电尘埃连续图像中推断出行星质量。在原始板块中的年轻行星引起的子结构可用于推断潜在的年轻行星属性。流体动力模拟已被用于研究地球属性与这些磁盘特征之间的关系。然而,这些尝试了微调的数值模拟,以一次适合一个原始磁盘,这是耗时的,或者四方平均模拟结果,以导出间隙宽度/深度和行星质量之间的一些线性关系,这丢失了信息磁盘中的不对称功能。为了应对这些缺点,我们开发了行星间隙神经网络(PGNET),以推断出2D图像的行星质量。我们首先符合张等人的网格数据。 (2018)作为分类问题。然后,通过使用近随机采样参数运行额外的模拟来分布数据集,并将行星质量和磁盘粘度一起作为回归问题衍生在一起。分类方法可以达到92 \%的准确性,而回归方法可以达到1 $ \ Sigma $ AS 0.16 DEX,用于行星质量和0.23°D磁盘粘度。我们可以在线性拟合方法中重现退化缩放$ \ alpha $ $ \ propto $ $ m_p ^ 3 $。这意味着CNN方法甚至可以用于寻找退化关系。梯度加权类激活映射有效地确认PGNETS使用适当的磁盘特征来限制行星质量。我们为张等人提供了PGNETS和传统配件方法的计划。 (2018),并讨论各种方法的优缺点。
translated by 谷歌翻译
我们提出了一种基于机器学习的新型方法,用于从干涉数据中检测出星系尺度的重力透镜,特别是使用国际Lofar望远镜(ILT)采用的方法,该镜头是在150 MHz的频率上观察到北部无线电天空,该频率是350的角度分辨率。 MAS和90 Ujy Beam-1(1 Sigma)的灵敏度。我们开发并测试了几个卷积神经网络,以确定给定样品被归类为镜头或非镜头事件的概率和不确定性。通过对包括逼真的镜头和非镜头无线电源的模拟干涉成像数据集进行训练和测试,我们发现可以恢复95.3%的镜头样品(真正的正速率),仅污染仅为0.008来自非静态样品(假阳性速率)的含量。考虑到预期的镜头概率,结果导致了92.2%的镜头事件的样品纯度。我们发现,当镜头图像之间的最大图像分离大于合成光束尺寸的3倍时,网络结构是最健壮的,并且镜头图像具有至少与20个Sigma(点源)的总磁通密度相等)检测。对于ILT,这对应于爱因斯坦半径大于0.5 ARCSEC和一个无线电源群体的镜头样品,其150 MHz通量密度超过2 MJY。通过应用这些标准和我们的镜头检测算法,我们希望发现Lofar两米天空调查中包含的绝大多数星系尺度重力透镜系统。
translated by 谷歌翻译
矮星系是小的,以暗物质为主导的星系,其中一些嵌入了银河系中。他们缺乏重型物质(例如,恒星和气体)使它们成为探测暗物质特性的完美测试床 - 了解这些系统中的空间暗物质分布可用于限制影响形成和进化的微物理暗物质相互作用我们宇宙中的结构。我们介绍了一种新方法,该方法利用基于模拟的推理和基于图的机器学习,以推断出恒星的可观察到的恒星重力与这些系统结合的可观察到的矮星系的暗物质密度曲线。我们的方法旨在解决基于动态牛仔裤建模的既定方法的一些局限性。我们表明,这种新颖的方法可以对暗物质概况施加更强的约束,因此,有可能权衡与暗物质晕圈小规模结构(例如核心核心差异)相关的一些持续的难题。
translated by 谷歌翻译
我们对托管银河系和andromeda星系的群众呈现出新的限制,并使用图形神经网络导出。我们的型号培训了骆驼项目的数千个最先进的流体动力模拟,仅利用属于晕圈的星系的位置,速度和恒星群体,并且能够对无似然推断进行无似的推理晕群,同时占宇宙学和天体物理的不确定性。我们的制约因素与其他传统方法的估计一致。
translated by 谷歌翻译
我们使用神经网络研究几种简化的暗物质(DM)模型及其在LHC的签名。我们专注于通常的单声角加上缺失的横向能量通道,但要训练算法我们在2D直方图中组织数据而不是逐个事件阵列。这导致较大的性能提升,以区分标准模型(SM)和SM以及新物理信号。我们使用KineMatic单速仪功能作为输入数据,允许我们描述具有单个数据示例的模型的系列。我们发现神经网络性能不依赖于模拟的后台事件数量,如果它们作为$ s / \ sqrt {b} $函数呈现,其中$ s $和$ b $是信号和背景的数量每直方图的事件分别。这提供了对方法的灵活性,因为在这种情况下测试特定模型只需要了解新物理单次横截面。此外,我们还在关于真实DM性质的错误假设下讨论网络性能。最后,我们提出了多模型分类器以更普遍的方式搜索和识别新信号,对于下一个LHC运行。
translated by 谷歌翻译
目前,由精确的径向速度(RV)观察结果受到恒星活性引入的虚假RV信号的限制。我们表明,诸如线性回归和神经网络之类的机器学习技术可以有效地从RV观测中删除活动信号(由于星形/张图引起的)。先前的工作着重于使用高斯工艺回归等建模技术仔细地过滤活性信号(例如Haywood等人,2014年)。取而代之的是,我们仅使用对光谱线平均形状的更改进行系统地删除活动信号,也没有有关收集观测值的信息。我们对模拟数据(使用SOAP 2.0软件生成; Dumusque等人,2014年生成)和从Harps-N太阳能望远镜(Dumusque等,2015; Phillips等人2015; 2016; Collier训练)培训了机器学习模型。 Cameron等人2019)。我们发现,这些技术可以从模拟数据(将RV散射从82 cm/s提高到3 cm/s)以及从HARPS-N太阳能望远镜中几乎每天进行的600多种真实观察结果来预测和消除恒星活动(将RV散射从82 cm/s提高到3 cm/s)。 (将RV散射从1.753 m/s提高到1.039 m/s,提高了约1.7倍)。将来,这些或类似的技术可能会从太阳系以外的恒星观察中去除活动信号,并最终有助于检测到阳光状恒星周围可居住的区域质量系外行星。
translated by 谷歌翻译
在背景主导的情况下,通过机器学习和信号和背景之间的可观察者之间的高度重叠来调查LHC在LHC的新物理搜索的敏感性。我们使用两种不同的型号,XGBoost和深度神经网络,利用可观察到之间的相关性,并将这种方法与传统的切割方法进行比较。我们认为不同的方法来分析模型的输出,发现模板拟合通常比简单的切割更好地执行。通过福芙氏分解,我们可以额外了解事件运动学与机器学习模型输出之间的关系。我们认为具有亚霉素的超对称场景作为一个具体示例,但方法可以应用于更广泛的超对称模型。
translated by 谷歌翻译
制定了具有机器学习模拟(骆驼)项目的宇宙学和天体物理学,通过数千名宇宙的流体动力模拟和机器学习将宇宙学与天体物理学结合起来。骆驼包含4,233个宇宙学仿真,2,049个n-body和2,184个最先进的流体动力模拟,在参数空间中采样巨大的体积。在本文中,我们介绍了骆驼公共数据发布,描述了骆驼模拟的特性和由它们产生的各种数据产品,包括光环,次麦,银河系和空隙目录,功率谱,Bispectra,Lyman - $ \ Alpha $光谱,概率分布函数,光环径向轮廓和X射线光子列表。我们还释放了超过骆驼 - 山姆的数十亿个星系的目录:与Santa Cruz半分析模型相结合的大量N身体模拟。我们释放包含350多个Terabytes的所有数据,并包含143,922个快照,数百万光环,星系和摘要统计数据。我们提供有关如何访问,下载,读取和处理数据AT \ URL {https://camels.readthedocs.io}的进一步技术详细信息。
translated by 谷歌翻译