神经普通微分方程(ODE)的概念是近似函数(数据模型)而不是函数本身的导数。在残留网络中,而不是具有隐藏层的离散序列,而是可以通过ode参数化隐藏状态的连续动力学的衍生物。已经表明,这种类型的神经网络能够产生与用于图像分类的等效残留网络相同的结果。在本文中,我们为语义分割任务设计了一种新颖的神经颂歌。我们从一个由残留模块组成的基线网络开始,然后使用这些模块来构建我们的神经ode网络。我们表明,我们的神经ODE能够使用训练记忆少57%,测试记忆少42%,参数数量减少68%。我们评估了我们的模型,有关CityScapes,Camvid,Lip和Pascal-Context数据集。
translated by 谷歌翻译
Spatial pyramid pooling module or encode-decoder structure are used in deep neural networks for semantic segmentation task. The former networks are able to encode multi-scale contextual information by probing the incoming features with filters or pooling operations at multiple rates and multiple effective fields-of-view, while the latter networks can capture sharper object boundaries by gradually recovering the spatial information. In this work, we propose to combine the advantages from both methods. Specifically, our proposed model, DeepLabv3+, extends DeepLabv3 by adding a simple yet effective decoder module to refine the segmentation results especially along object boundaries. We further explore the Xception model and apply the depthwise separable convolution to both Atrous Spatial Pyramid Pooling and decoder modules, resulting in a faster and stronger encoder-decoder network. We demonstrate the effectiveness of the proposed model on PASCAL VOC 2012 and Cityscapes datasets, achieving the test set performance of 89.0% and 82.1% without any post-processing. Our paper is accompanied with a publicly available reference implementation of the proposed models in Tensorflow at https: //github.com/tensorflow/models/tree/master/research/deeplab.
translated by 谷歌翻译
In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed "DeepLab" system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7% mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.
translated by 谷歌翻译
Australian Centre for Robotic Vision {guosheng.lin;anton.milan;chunhua.shen;
translated by 谷歌翻译
在语义细分中,将高级上下文信息与低级详细信息集成至关重要。为此,大多数现有的分割模型都采用双线性启动采样和卷积来具有不同尺度的地图,然后以相同的分辨率对齐。但是,双线性启动采样模糊了这些特征地图和卷积中所学到的精确信息,这会产生额外的计算成本。为了解决这些问题,我们提出了隐式特征对齐函数(IFA)。我们的方法的灵感来自隐式神经表示的快速扩展的主题,在该主题中,基于坐标的神经网络用于指定信号字段。在IFA中,特征向量被视为表示2D信息字段。给定查询坐标,附近的具有相对坐标的特征向量是从多级特征图中获取的,然后馈入MLP以生成相应的输出。因此,IFA隐含地将特征图在不同级别对齐,并能够在任意分辨率中产生分割图。我们证明了IFA在多个数据集上的功效,包括CityScapes,Pascal环境和ADE20K。我们的方法可以与各种体系结构的改进结合使用,并在共同基准上实现最新的计算准确性权衡。代码将在https://github.com/hzhupku/ifa上提供。
translated by 谷歌翻译
语义分割是计算机视觉中的关键任务之一,它是为图像中的每个像素分配类别标签。尽管最近取得了重大进展,但大多数现有方法仍然遇到两个具有挑战性的问题:1)图像中的物体和东西的大小可能非常多样化,要求将多规模特征纳入完全卷积网络(FCN); 2)由于卷积网络的固有弱点,很难分类靠近物体/物体的边界的像素。为了解决第一个问题,我们提出了一个新的多受感受性现场模块(MRFM),明确考虑了多尺度功能。对于第二期,我们设计了一个边缘感知损失,可有效区分对象/物体的边界。通过这两种设计,我们的多种接收场网络在两个广泛使用的语义分割基准数据集上实现了新的最先进的结果。具体来说,我们在CityScapes数据集上实现了83.0的平均值,在Pascal VOC2012数据集中达到了88.4的平均值。
translated by 谷歌翻译
语义分割是自主车辆了解周围场景的关键技术。当代模型的吸引力表现通常以牺牲重计算和冗长的推理时间为代价,这对于自行车来说是无法忍受的。在低分辨率图像上使用轻量级架构(编码器 - 解码器或双路)或推理,最近的方法实现了非常快的场景解析,即使在单个1080TI GPU上以100多件FPS运行。然而,这些实时方法与基于扩张骨架的模型之间的性能仍有显着差距。为了解决这个问题,我们提出了一家专门为实时语义细分设计的高效底座。所提出的深层双分辨率网络(DDRNET)由两个深部分支组成,之间进行多个双边融合。此外,我们设计了一个名为Deep聚合金字塔池(DAPPM)的新上下文信息提取器,以基于低分辨率特征映射放大有效的接收字段和熔丝多尺度上下文。我们的方法在城市景观和Camvid数据集上的准确性和速度之间实现了新的最先进的权衡。特别是,在单一的2080Ti GPU上,DDRNET-23-Slim在Camvid测试组上的Citycapes试验组102 FPS上的102 FPS,74.7%Miou。通过广泛使用的测试增强,我们的方法优于最先进的模型,需要计算得多。 CODES和培训的型号在线提供。
translated by 谷歌翻译
人们普遍认为,对于准确的语义细分,必须使用昂贵的操作(例如,非常卷积)结合使用昂贵的操作(例如非常卷积),从而导致缓慢的速度和大量的内存使用。在本文中,我们质疑这种信念,并证明既不需要高度的内部决议也不是必需的卷积。我们的直觉是,尽管分割是一个每像素的密集预测任务,但每个像素的语义通常都取决于附近的邻居和遥远的环境。因此,更强大的多尺度功能融合网络起着至关重要的作用。在此直觉之后,我们重新访问常规的多尺度特征空间(通常限制为P5),并将其扩展到更丰富的空间,最小的P9,其中最小的功能仅为输入大小的1/512,因此具有很大的功能接受场。为了处理如此丰富的功能空间,我们利用最近的BIFPN融合了多尺度功能。基于这些见解,我们开发了一个简化的分割模型,称为ESEG,该模型既没有内部分辨率高,也没有昂贵的严重卷积。也许令人惊讶的是,与多个数据集相比,我们的简单方法可以以比以前的艺术更快地实现更高的准确性。在实时设置中,ESEG-Lite-S在189 fps的CityScapes [12]上达到76.0%MIOU,表现优于更快的[9](73.1%MIOU时为170 fps)。我们的ESEG-LITE-L以79 fps的速度运行,达到80.1%MIOU,在很大程度上缩小了实时和高性能分割模型之间的差距。
translated by 谷歌翻译
Segblocks通过根据图像区域的复杂性动态调整处理分辨率来降低现有神经网络的计算成本。我们的方法将图像拆分为低复杂性的块和尺寸块块,从而减少了操作数量和内存消耗的数量。轻量级的政策网络选择复杂区域,是使用强化学习训练的。此外,我们介绍了CUDA中实现的几个模块以处理块中的图像。最重要的是,我们的新颖的阻止模块可以防止现有方法遭受的块边界的特征不连续性,同时保持记忆消耗受到控制。我们对语义分割的城市景观,Camvid和Mapillary Vistas数据集进行的实验表明,与具有相似复杂性的静态基准相比,动态处理图像与复杂性的折衷相对于复杂性更高。例如,我们的方法将SwiftNet-RN18的浮点操作数量降低了60%,并将推理速度提高50%,而CityScapes的MIOU准确性仅降低0.3%。
translated by 谷歌翻译
现代的高性能语义分割方法采用沉重的主链和扩张的卷积来提取相关特征。尽管使用上下文和语义信息提取功能对于分割任务至关重要,但它为实时应用程序带来了内存足迹和高计算成本。本文提出了一种新模型,以实现实时道路场景语义细分的准确性/速度之间的权衡。具体来说,我们提出了一个名为“比例吸引的条带引导特征金字塔网络”(s \ textsuperscript {2} -fpn)的轻巧模型。我们的网络由三个主要模块组成:注意金字塔融合(APF)模块,比例吸引条带注意模块(SSAM)和全局特征Upsample(GFU)模块。 APF采用了注意力机制来学习判别性多尺度特征,并有助于缩小不同级别之间的语义差距。 APF使用量表感知的关注来用垂直剥离操作编码全局上下文,并建模长期依赖性,这有助于将像素与类似的语义标签相关联。此外,APF还采用频道重新加权块(CRB)来强调频道功能。最后,S \ TextSuperScript {2} -fpn的解码器然后采用GFU,该GFU用于融合APF和编码器的功能。已经对两个具有挑战性的语义分割基准进行了广泛的实验,这表明我们的方法通过不同的模型设置实现了更好的准确性/速度权衡。提出的模型已在CityScapes Dataset上实现了76.2 \%miou/87.3fps,77.4 \%miou/67fps和77.8 \%miou/30.5fps,以及69.6 \%miou,71.0 miou,71.0 \%miou,和74.2 \%\%\%\%\%\%。 miou在Camvid数据集上。这项工作的代码将在\ url {https://github.com/mohamedac29/s2-fpn提供。
translated by 谷歌翻译
Recently, Neural Architecture Search (NAS) has successfully identified neural network architectures that exceed human designed ones on large-scale image classification. In this paper, we study NAS for semantic image segmentation. Existing works often focus on searching the repeatable cell structure, while hand-designing the outer network structure that controls the spatial resolution changes. This choice simplifies the search space, but becomes increasingly problematic for dense image prediction which exhibits a lot more network level architectural variations. Therefore, we propose to search the network level structure in addition to the cell level structure, which forms a hierarchical architecture search space. We present a network level search space that includes many popular designs, and develop a formulation that allows efficient gradient-based architecture search (3 P100 GPU days on Cityscapes images). We demonstrate the effectiveness of the proposed method on the challenging Cityscapes, PASCAL VOC 2012, and ADE20K datasets. Auto-DeepLab, our architecture searched specifically for semantic image segmentation, attains state-of-the-art performance without any ImageNet pretraining. 1 * Work done while an intern at Google.
translated by 谷歌翻译
Semantic segmentation is a challenging task that addresses most of the perception needs of Intelligent Vehicles (IV) in an unified way. Deep Neural Networks excel at this task, as they can be trained end-to-end to accurately classify multiple object categories in an image at pixel level. However, a good trade-off between high quality and computational resources is yet not present in state-of-the-art semantic segmentation approaches, limiting their application in real vehicles. In this paper, we propose a deep architecture that is able to run in real-time while providing accurate semantic segmentation. The core of our architecture is a novel layer that uses residual connections and factorized convolutions in order to remain efficient while retaining remarkable accuracy. Our approach is able to run at over 83 FPS in a single Titan X, and 7 FPS in a Jetson TX1 (embedded GPU). A comprehensive set of experiments on the publicly available Cityscapes dataset demonstrates that our system achieves an accuracy that is similar to the state of the art, while being orders of magnitude faster to compute than other architectures that achieve top precision. The resulting trade-off makes our model an ideal approach for scene understanding in IV applications. The code is publicly available at: https://github.com/Eromera/erfnet
translated by 谷歌翻译
One of recent trends [31,32,14] in network architecture design is stacking small filters (e.g., 1x1 or 3x3) in the entire network because the stacked small filters is more efficient than a large kernel, given the same computational complexity. However, in the field of semantic segmentation, where we need to perform dense per-pixel prediction, we find that the large kernel (and effective receptive field) plays an important role when we have to perform the classification and localization tasks simultaneously. Following our design principle, we propose a Global Convolutional Network to address both the classification and localization issues for the semantic segmentation. We also suggest a residual-based boundary refinement to further refine the object boundaries. Our approach achieves state-of-art performance on two public benchmarks and significantly outperforms previous results, 82.2% (vs 80.2%) on PASCAL VOC 2012 dataset and 76.9% (vs 71.8%) on Cityscapes dataset.
translated by 谷歌翻译
跨不同层的特征的聚合信息是密集预测模型的基本操作。尽管表现力有限,但功能级联占主导地位聚合运营的选择。在本文中,我们引入了细分特征聚合(AFA),以融合不同的网络层,具有更具表现力的非线性操作。 AFA利用空间和渠道注意,以计算层激活的加权平均值。灵感来自神经体积渲染,我们将AFA扩展到规模空间渲染(SSR),以执行多尺度预测的后期融合。 AFA适用于各种现有网络设计。我们的实验表明了对挑战性的语义细分基准,包括城市景观,BDD100K和Mapillary Vistas的一致而显着的改进,可忽略不计的计算和参数开销。特别是,AFA改善了深层聚集(DLA)模型在城市景观上的近6%Miou的性能。我们的实验分析表明,AFA学会逐步改进分割地图并改善边界细节,导致新的最先进结果对BSDS500和NYUDV2上的边界检测基准。在http://vis.xyz/pub/dla-afa上提供代码和视频资源。
translated by 谷歌翻译
语义分割的最新进步通常在其在快速增加视野之后使用特殊的上下文模块来调整想象成掠夺骨干网。虽然成功,骨干,其中大部分计算谎言,但没有足够的足够大的视野来制定最佳决策。最近的进步通过快速下采样在骨干中采样分辨率来解决这个问题,同时还具有具有更高分辨率的一个或多个平行分支。我们通过设计resnext启发块结构来采用不同的方法,该结构使用具有不同扩张速率的两个平行的3x3卷积层,以增加视野,同时保留本地细节。通过在骨干中重复此块结构,我们不需要在它之后追加任何特殊的上下文模块。此外,我们提出了一种轻量级解码器,它比常见的替代方案更好地恢复本地信息。为了展示我们方法的有效性,我们的Model Regseg在实时城市景观和Camvid数据集上实现了最先进的结果。使用T4 GPU具有混合精度,Regseg达到78.3 Miou在Citycapes测试设置为30 FPS的测试,而80.9 miou在70 fps上设定的Camvid测试,两者都没有想象的预制。
translated by 谷歌翻译
我们展示了一个下一代神经网络架构,马赛克,用于移动设备上的高效和准确的语义图像分割。MOSAIC是通过各种移动硬件平台使用常用的神经操作设计,以灵活地部署各种移动平台。利用简单的非对称编码器 - 解码器结构,该解码器结构由有效的多尺度上下文编码器和轻量级混合解码器组成,以从聚合信息中恢复空间细节,Mosaic在平衡准确度和计算成本的同时实现了新的最先进的性能。基于搜索的分类网络,马赛克部署在定制的特征提取骨架顶部,达到目前行业标准MLPerf型号和最先进的架构,达到5%的绝对精度增益。
translated by 谷歌翻译
语义分割是将类标签分配给图像中每个像素的问题,并且是自动车辆视觉堆栈的重要组成部分,可促进场景的理解和对象检测。但是,许多表现最高的语义分割模型非常复杂且笨拙,因此不适合在计算资源有限且低延迟操作的板载自动驾驶汽车平台上部署。在这项调查中,我们彻底研究了旨在通过更紧凑,更有效的模型来解决这种未对准的作品,该模型能够在低内存嵌入式系统上部署,同时满足实时推理的限制。我们讨论了该领域中最杰出的作品,根据其主要贡献将它们置于分类法中,最后我们评估了在一致的硬件和软件设置下,所讨论模型的推理速度,这些模型代表了具有高端的典型研究环境GPU和使用低内存嵌入式GPU硬件的现实部署方案。我们的实验结果表明,许多作品能够在资源受限的硬件上实时性能,同时说明延迟和准确性之间的一致权衡。
translated by 谷歌翻译
近年来,深度神经网络(DNN)在几个计算机视觉任务上实现了最先进的性能。然而,这些DNN的一个典型缺点是需要大规模标记的数据。即使很少拍摄的学习方法解决了这个问题,它们通常会在现有方法的顶部使用诸如元学习和度量学习的技术。在这项工作中,我们通过提出名为Ikshana的假设来解决神经科学观点的这个问题,这是由神经科学的若干结果支持的。我们的假设近似于理解自然场景/图像的人类大脑中概念性要素的炼油过程。虽然我们的假设在神经科学中没有特定的新颖性,但它为设计DNN为视觉任务提供了一种新的视角。通过遵循Ikshana假设,我们设计了一个名为Ikshananet的新型神经启发的CNN架构。经验结果证明了我们的方法通过表现出在城市景观的整个和子集上的若干基座和Camvid语义分割基准测试中的效果。
translated by 谷歌翻译
共同出现的视觉模式使上下文聚集成为语义分割的重要范式。现有的研究重点是建模图像中的上下文,同时忽略图像以下相应类别的有价值的语义。为此,我们提出了一个新颖的软采矿上下文信息,超出了名为McIbi ++的图像范式,以进一步提高像素级表示。具体来说,我们首先设置了动态更新的内存模块,以存储各种类别的数据集级别的分布信息,然后利用信息在网络转发过程中产生数据集级别类别表示。之后,我们为每个像素表示形式生成一个类概率分布,并以类概率分布作为权重进行数据集级上下文聚合。最后,使用汇总的数据集级别和传统的图像级上下文信息来增强原始像素表示。此外,在推论阶段,我们还设计了一种粗到最新的迭代推理策略,以进一步提高分割结果。 MCIBI ++可以轻松地纳入现有的分割框架中,并带来一致的性能改进。此外,MCIBI ++可以扩展到视频语义分割框架中,比基线进行了大量改进。配备MCIBI ++,我们在七个具有挑战性的图像或视频语义分段基准测试中实现了最先进的性能。
translated by 谷歌翻译
We focus on the challenging task of real-time semantic segmentation in this paper. It finds many practical applications and yet is with fundamental difficulty of reducing a large portion of computation for pixel-wise label inference. We propose an image cascade network (ICNet) that incorporates multi-resolution branches under proper label guidance to address this challenge. We provide in-depth analysis of our framework and introduce the cascade feature fusion unit to quickly achieve highquality segmentation. Our system yields real-time inference on a single GPU card with decent quality results evaluated on challenging datasets like Cityscapes, CamVid and COCO-Stuff.
translated by 谷歌翻译