我们提出了一种拓扑优化的样品深度学习策略。我们的端到端方法受到监督,包括基于物理学的预处理和模棱两可的网络。我们分析了深度学习管道的不同组成部分如何通过大规模比较影响所需的培训样品的数量。结果表明,包括物理概念不仅会极大地提高样本效率,还可以提高预测的身体正确性。最后,我们发布了两个拓扑优化数据集,其中包含问题和相应的地面真相解决方案。我们相信这些数据集将提高该领域的可比性和未来进度。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
物理信息神经网络(PINN)能够找到给定边界值问题的解决方案。我们使用有限元方法(FEM)的几个想法来增强工程问题中现有的PINN的性能。当前工作的主要贡献是促进使用主要变量的空间梯度作为分离神经网络的输出。后来,具有较高衍生物的强形式应用于主要变量的空间梯度作为物理约束。此外,该问题的所谓能量形式被应用于主要变量,作为训练的附加约束。所提出的方法仅需要一阶导数来构建物理损失函数。我们讨论了为什么通过不同模型之间的各种比较,这一点是有益的。基于配方混合的PINN和FE方法具有一些相似之处。前者利用神经网络的复杂非线性插值将PDE及其能量形式最小化及其能量形式,而后者则在元素节点借助Shape函数在元素节点上使用相同。我们专注于异质固体,以显示深学习在不同边界条件下在复杂环境中预测解决方案的能力。针对FEM的解决方案对两个原型问题的解决方案进行了检查:弹性和泊松方程(稳态扩散问题)。我们得出的结论是,通过正确设计PINN中的网络体系结构,深度学习模型有可能在没有其他来源的任何可用初始数据中解决异质域中的未知数。最后,关于Pinn和FEM的组合进行了讨论,以在未来的开发中快速准确地设计复合材料。
translated by 谷歌翻译
隐式神经表示的最新进展在为偏微分方程产生数值解之时表现出很大的希望。与传统替代方案相比,这种表示采用参数化神经网络以以网眼的方式定义高度详细,连续和完全可差的信号。在这项工作中,我们提出了一种用于拓扑优化的新型机器学习方法 - 高维参数空间和高度非线性物镜景观的重要阶类逆问题。为了在无网状拓扑优化的背景下有效利用神经表示,我们使用多层的感知来参数化两个密度和位移场。我们的实验表明,我们的方法对于最大限度地减少结构依从性目标,我们的方法具有竞争力,并且它使得能够自我监督的拓扑优化问题的持续解决方案空间学习。
translated by 谷歌翻译
Neural operators, which emerge as implicit solution operators of hidden governing equations, have recently become popular tools for learning responses of complex real-world physical systems. Nevertheless, the majority of neural operator applications has thus far been data-driven, which neglects the intrinsic preservation of fundamental physical laws in data. In this paper, we introduce a novel integral neural operator architecture, to learn physical models with fundamental conservation laws automatically guaranteed. In particular, by replacing the frame-dependent position information with its invariant counterpart in the kernel space, the proposed neural operator is by design translation- and rotation-invariant, and consequently abides by the conservation laws of linear and angular momentums. As applications, we demonstrate the expressivity and efficacy of our model in learning complex material behaviors from both synthetic and experimental datasets, and show that, by automatically satisfying these essential physical laws, our learned neural operator is not only generalizable in handling translated and rotated datasets, but also achieves state-of-the-art accuracy and efficiency as compared to baseline neural operator models.
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
作为在受边界价值约束下的部分微分方程(PDE)的经典数值求解器的替代方案,人们对研究可以有效解决此类问题的神经网络引起了人们的兴趣。在这项工作中,我们使用图神经网络(GNN)和光谱图卷积为两个不同时间独立的PDE设计了一个通用解决方案操作员。我们从有限元求解器的模拟数据上训练网络,以了解各种形状和不均匀性。与以前的作品相反,我们专注于受过训练的操作员概括以前看不见的情况的能力。具体而言,我们测试对不同形状和解决方案叠加的网格的概括,以确保不同数量的不均匀性。我们发现,在有限元网格中有很大变化的不同数据集进行培训是在所有情况下都能实现良好概括结果的关键要素。因此,我们认为GNN可以用来学习在一系列属性上概括并生成的解决方案的解决方案运算符,并比通用求解器快得多。我们可以公开可用的数据集可以使用并扩展,以验证这些模型在不同条件下的鲁棒性。
translated by 谷歌翻译
从早期图像处理到现代计算成像,成功的模型和算法都依赖于自然信号的基本属性:对称性。在这里,对称是指信号集的不变性属性,例如翻译,旋转或缩放等转换。对称性也可以以模棱两可的形式纳入深度神经网络中,从而可以进行更多的数据效率学习。虽然近年来端到端的图像分类网络的设计方面取得了重要进展,但计算成像引入了对等效网络解决方案的独特挑战,因为我们通常只通过一些嘈杂的不良反向操作员观察图像,可能不是均等的。我们回顾了现象成像的新兴领域,并展示它如何提供改进的概括和新成像机会。在此过程中,我们展示了采集物理学与小组动作之间的相互作用,以及与迭代重建,盲目的压缩感应和自我监督学习之间的联系。
translated by 谷歌翻译
Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems.
translated by 谷歌翻译
神经运营商最近成为设计神经网络形式的功能空间之间的解决方案映射的流行工具。不同地,从经典的科学机器学习方法,以固定分辨率为输入参数的单个实例学习参数,神经运算符近似PDE系列的解决方案图。尽管他们取得了成功,但是神经运营商的用途迄今为止仅限于相对浅的神经网络,并限制了学习隐藏的管理法律。在这项工作中,我们提出了一种新颖的非局部神经运营商,我们将其称为非本体内核网络(NKN),即独立的分辨率,其特征在于深度神经网络,并且能够处理各种任务,例如学习管理方程和分类图片。我们的NKN源于神经网络的解释,作为离散的非局部扩散反应方程,在无限层的极限中,相当于抛物线非局部方程,其稳定性通过非本种载体微积分分析。与整体形式的神经运算符相似允许NKN捕获特征空间中的远程依赖性,而节点到节点交互的持续处理使NKNS分辨率独立于NKNS分辨率。与神经杂物中的相似性,在非本体意义上重新解释,并且层之间的稳定网络动态允许NKN的最佳参数从浅到深网络中的概括。这一事实使得能够使用浅层初始化技术。我们的测试表明,NKNS在学习管理方程和图像分类任务中占据基线方法,并概括到不同的分辨率和深度。
translated by 谷歌翻译
在过去的十年中,在许多工程领域,包括自动驾驶汽车,医疗诊断和搜索引擎,甚至在艺术创作中,神经网络(NNS)已被证明是极有效的工具。确实,NN通常果断地超过传统算法。直到最近才引起重大兴趣的一个领域是使用NNS设计数值求解器,尤其是用于离散的偏微分方程。最近的几篇论文考虑使用NNS来开发多机方法,这些方法是解决离散的偏微分方程和其他稀疏矩阵问题的领先计算工具。我们扩展了这些新想法,重点关注所谓的放松操作员(也称为Smoothers),这是Multigrid算法的重要组成部分,在这种情况下尚未受到很多关注。我们探索了一种使用NNS学习带有随机系数的扩散算子的放松参数的方法,用于雅各比类型的Smoothers和4Color Gaussseidel Smoothers。后者的产量异常高效且易于使连续的放松(SOR)SmoOthors平行。此外,这项工作表明,使用两个网格方法在相对较小的网格上学习放松参数,而Gelfand的公式可以轻松实现。这些方法有效地产生了几乎最佳的参数,从而显着提高了大网格上的Multigrid算法的收敛速率。
translated by 谷歌翻译
\ emph {几何深度学习}(GDL)的最新进展显示了其提供强大数据驱动模型的潜力。这提供了探索从图形数据中\ emph {部分微分方程}(PDES)控制的物理系统的新方法的动力。然而,尽管做出了努力和最近的成就,但几个研究方向仍未开发,进步仍然远非满足现实现象的身体要求。主要障碍之一是缺乏基准数据集和常见的物理评估协议。在本文中,我们提出了一个2-D Graph-Mesh数据集,以研究High Reynolds制度的机翼上的气流(从$ 10^6 $及以后)。我们还对翼型上的应力力引入指标,以评估重要的物理量的GDL模型。此外,我们提供广泛的GDL基准。
translated by 谷歌翻译
在本文中,我们提出了帕托 - 一种可生产性感知拓扑优化(至)框架,以帮助有效地探索使用金属添加剂制造(AM)制造的部件的设计空间,同时确保相对于裂化的可制造性。具体地,通过激光粉末融合制造的部件由于从构建过程中产生的陡峭热梯度产生的高残余应力值而易于诸如翘曲或裂缝的缺陷。为这些零件的设计成熟并规划其制作可能跨越几年,通常涉及设计和制造工程师之间的多种切换。帕托基于先验的无裂缝设计的发现,使得优化部分可以在一开始就自由缺陷。为确保设计在优化期间无裂缝,可以在使用裂缝指数的标准制剂中明确地编码生产性。探索多个裂缝指数并使用实验验证,最大剪切应变指数(MSSI)被显示为准确的裂缝指数。模拟构建过程是耦合的多物理计算,并将其结合在循环中可以计算上禁止。我们利用了深度卷积神经网络的当前进步,并基于基于关注的U-Net架构的高保真代理模型,以将MSSI值预测为部分域上的空间变化的字段。此外,我们采用自动差异来直接计算关于输入设计变量的最大MSSI的梯度,并使用基于性能的灵敏度字段增强,以优化设计,同时考虑重量,可制造性和功能之间的权衡。我们通过3D基准研究以及实验验证来证明所提出的方法的有效性。
translated by 谷歌翻译
部分微分方程(PDE)参见在科学和工程中的广泛使用,以将物理过程的模拟描述为标量和向量场随着时间的推移相互作用和协调。由于其标准解决方案方法的计算昂贵性质,神经PDE代理已成为加速这些模拟的积极研究主题。但是,当前的方法并未明确考虑不同字段及其内部组件之间的关系,这些关系通常是相关的。查看此类相关场的时间演变通过多活动场的镜头,使我们能够克服这些局限性。多胎场由标量,矢量以及高阶组成部分组成,例如双分数和三分分射线。 Clifford代数可以描述它们的代数特性,例如乘法,加法和其他算术操作。据我们所知,本文介绍了此类多人表示的首次使用以及Clifford的卷积和Clifford Fourier在深度学习的背景下的转换。由此产生的Clifford神经层普遍适用,并将在流体动力学,天气预报和一般物理系统的建模领域中直接使用。我们通过经验评估克利福德神经层的好处,通过在二维Navier-Stokes和天气建模任务以及三维Maxwell方程式上取代其Clifford对应物中常见的神经PDE代理中的卷积和傅立叶操作。克利福德神经层始终提高测试神经PDE代理的概括能力。
translated by 谷歌翻译
人类生理学中的各种结构遵循特异性形态,通常在非常细的尺度上表达复杂性。这种结构的例子是胸前气道,视网膜血管和肝血管。可以观察到可以观察到可以观察到可以观察到可以观察到空间排列的磁共振成像(MRI),计算机断层扫描(CT),光学相干断层扫描(OCT)等医学成像模式(MRI),计算机断层扫描(CT),可以观察到空间排列的大量2D和3D图像的集合。这些结构在医学成像中的分割非常重要,因为对结构的分析提供了对疾病诊断,治疗计划和预后的见解。放射科医生手动标记广泛的数据通常是耗时且容易出错的。结果,在过去的二十年中,自动化或半自动化的计算模型已成为医学成像的流行研究领域,迄今为止,许多计算模型已经开发出来。在这项调查中,我们旨在对当前公开可用的数据集,细分算法和评估指标进行全面审查。此外,讨论了当前的挑战和未来的研究方向。
translated by 谷歌翻译
Structural failures are often caused by catastrophic events such as earthquakes and winds. As a result, it is crucial to predict dynamic stress distributions during highly disruptive events in real time. Currently available high-fidelity methods, such as Finite Element Models (FEMs), suffer from their inherent high complexity. Therefore, to reduce computational cost while maintaining accuracy, a Physics Informed Neural Network (PINN), PINN-Stress model, is proposed to predict the entire sequence of stress distribution based on Finite Element simulations using a partial differential equation (PDE) solver. Using automatic differentiation, we embed a PDE into a deep neural network's loss function to incorporate information from measurements and PDEs. The PINN-Stress model can predict the sequence of stress distribution in almost real-time and can generalize better than the model without PINN.
translated by 谷歌翻译
高维时空动力学通常可以在低维子空间中编码。用于建模,表征,设计和控制此类大规模系统的工程应用通常依赖于降低尺寸,以实时计算解决方案。降低维度的常见范例包括线性方法,例如奇异值分解(SVD)和非线性方法,例如卷积自动编码器(CAE)的变体。但是,这些编码技术缺乏有效地表示与时空数据相关的复杂性的能力,后者通常需要可变的几何形状,非均匀的网格分辨率,自适应网格化和/或参数依赖性。为了解决这些实用的工程挑战,我们提出了一个称为神经隐式流(NIF)的一般框架,该框架可以实现大型,参数,时空数据的网格不稳定,低级别表示。 NIF由两个修改的多层感知器(MLP)组成:(i)shapenet,它分离并代表空间复杂性,以及(ii)参数,该参数解释了任何其他输入复杂性,包括参数依赖关系,时间和传感器测量值。我们演示了NIF用于参数替代建模的实用性,从而实现了复杂时空动力学的可解释表示和压缩,有效的多空间质量任务以及改善了稀疏重建的通用性能。
translated by 谷歌翻译