Data scarcity is a notable problem, especially in the medical domain, due to patient data laws. Therefore, efficient Pre-Training techniques could help in combating this problem. In this paper, we demonstrate that a model trained on the time direction of functional neuro-imaging data could help in any downstream task, for example, classifying diseases from healthy controls in fMRI data. We train a Deep Neural Network on Independent components derived from fMRI data using the Independent component analysis (ICA) technique. It learns time direction in the ICA-based data. This pre-trained model is further trained to classify brain disorders in different datasets. Through various experiments, we have shown that learning time direction helps a model learn some causal relation in fMRI data that helps in faster convergence, and consequently, the model generalizes well in downstream classification tasks even with fewer data records.
translated by 谷歌翻译
发现不同的特征和他们从数据的关系可以帮助我们揭示各种任务至关重要的宝贵知识,例如分类。在神经影像体中,这些特征可以有助于理解,分类和可能预防大脑疾病。高度性能的模型内省过度分辨深度学习(DL)模型可以帮助找到这些特征和关系。然而,为了实现高性能等级DL模型,需要许多标记的训练样本($ N $)很少可用。本文介绍了一种涉及图形卷积/神经网络(GCNS / GNN)的预训练方法,基于输入样本的两个高级嵌入之间的相互信息。许多最近提出的预训练方法预先列出了诸多可能的架构网络之一。由于几乎每个DL模型都是多个网络的集合,因此我们从模型的两个不同网络中获取我们的高级嵌入式 - A卷积和图形网络 - 。学习的高级图潜在表示有助于提高下游图形分类任务的性能,并绕过需要大量标记的数据样本。我们将方法应用于神经影像学数据集,用于将受试者分类为健康对照(HC)和精神分裂症(SZ)组。我们的实验表明,预先训练的模型显着优于非预先训练的模型,并且需要50美元的数据进行类似的性能。
translated by 谷歌翻译
多变量动力过程通常可以通过表示每个单独的时间序列的组件之间的加权连接图直观地描述。甚至如Pearson相关矩阵的简单表示,如Pearson相关矩阵,也可以是脑成像文献中所示的信息和预测。但是,有一种共识期望,强大的图形神经网络(GNNS)应该在类似的环境中更好地执行。在这项工作中,我们提出了一个比深谷深度浅的模型,但在脑成像应用中的预测准确性上才能表达它们。我们的模型学习单个时间序列的自回归结构,并通过以端到端的方式通过自我关注机制来估计学习的表示之间的指示连接图。模型的监督培训作为患者和控制之间的分类器导致模型,该模型产生指示的连接图,并突出显示每个受试者预测的时间序列的组件。我们展示了我们对功能性神经影像数据集分类精神分裂症患者和对照的结果。
translated by 谷歌翻译
早期发现阿尔茨海默氏病对于部署干预措施和减慢疾病进展至关重要。在过去的十年中,已经探索了许多机器学习和深度学习算法,目的是为阿尔茨海默氏症建立自动检测。数据增强技术和先进的深度学习体系结构的进步已经在该领域开辟了新的边界,研究正在快速发展。因此,这项调查的目的是概述有关阿尔茨海默氏病诊断深度学习模型的最新研究。除了对众多数据源,神经网络架构以及常用的评估措施进行分类外,我们还对实施和可重复性进行了分类。我们的目标是协助感兴趣的研究人员跟上最新的发展,并将早期的调查作为基准。此外,我们还指出了该主题的未来研究方向。
translated by 谷歌翻译
预训练在机器学习的不同领域表现出成功,例如计算机视觉,自然语言处理(NLP)和医学成像。但是,尚未完全探索用于临床数据分析。记录了大量的临床记录,但是对于在小型医院收集的数据或处理罕见疾病的数据仍可能稀缺数据和标签。在这种情况下,对较大的未标记临床数据进行预训练可以提高性能。在本文中,我们提出了专为异质的多模式临床数据设计的新型无监督的预训练技术,用于通过蒙版语言建模(MLM)启发的患者预测,通过利用对人群图的深度学习来启发。为此,我们进一步提出了一个基于图形转换器的网络,该网络旨在处理异质临床数据。通过将基于掩盖的预训练与基于变压器的网络相结合,我们将基于掩盖的其他域中训练的成功转化为异质临床数据。我们使用三个医学数据集Tadpole,Mimic-III和一个败血症预测数据集,在自我监督和转移学习设置中展示了我们的预训练方法的好处。我们发现,我们提出的培训方法有助于对患者和人群水平的数据进行建模,并提高所有数据集中不同微调任务的性能。
translated by 谷歌翻译
研究了自闭症数据集,以确定自闭症和健康组之间的差异。为此,分析了这两组的静止状态功能磁共振成像(RS-FMRI)数据,并创建了大脑区域之间的连接网络。开发了几个分类框架,以区分组之间的连接模式。比较了统计推断和精度的最佳模型,并分析了精度和模型解释性之间的权衡。最后,据报道,分类精度措施证明了我们框架的性能。我们的最佳模型可以以71%的精度将自闭症和健康的患者分类为多站点I数据。
translated by 谷歌翻译
功能连接(FC)研究已经证明了通过FMRI相关矩阵的无向加权图来研究脑及其疾病的总体价值。然而,与FC的大多数工作都取决于连接的方式,还取决于FC矩阵的手册后HOC分析。在这项工作中,我们提出了一个深入的学习架构Braingnn,它可以学习连接结构,作为学习对象的一部分。它同时将图形神经网络应用于此学习图,并学习选择对预测任务重要的大脑区域的稀疏子集。我们展示了在精神分裂症FMRI数据集中的模型的最先进的分类性能,并证明了内省如何导致紊乱的相关结果。模型学到的图表表现出强烈的阶级歧视,相关地区的稀疏子集与精神分裂症文献一致。
translated by 谷歌翻译
大脑网络将大脑区域之间的复杂连接性描述为图形结构,这为研究脑连接素提供了强大的手段。近年来,图形神经网络已成为使用结构化数据的普遍学习范式。但是,由于数据获取的成本相对较高,大多数大脑网络数据集的样本量受到限制,这阻碍了足够的培训中的深度学习模型。受元学习的启发,该论文以有限的培训示例快速学习新概念,研究了在跨数据库中分析脑连接组的数据有效培训策略。具体而言,我们建议在大型样本大小的数据集上进行元训练模型,并将知识转移到小数据集中。此外,我们还探索了两种面向脑网络的设计,包括Atlas转换和自适应任务重新启动。与其他训练前策略相比,我们的基于元学习的方法实现了更高和稳定的性能,这证明了我们提出的解决方案的有效性。该框架还能够以数据驱动的方式获得有关数据集和疾病之间相似之处的新见解。
translated by 谷歌翻译
Over the years, Machine Learning models have been successfully employed on neuroimaging data for accurately predicting brain age. Deviations from the healthy brain aging pattern are associated to the accelerated brain aging and brain abnormalities. Hence, efficient and accurate diagnosis techniques are required for eliciting accurate brain age estimations. Several contributions have been reported in the past for this purpose, resorting to different data-driven modeling methods. Recently, deep neural networks (also referred to as deep learning) have become prevalent in manifold neuroimaging studies, including brain age estimation. In this review, we offer a comprehensive analysis of the literature related to the adoption of deep learning for brain age estimation with neuroimaging data. We detail and analyze different deep learning architectures used for this application, pausing at research works published to date quantitatively exploring their application. We also examine different brain age estimation frameworks, comparatively exposing their advantages and weaknesses. Finally, the review concludes with an outlook towards future directions that should be followed by prospective studies. The ultimate goal of this paper is to establish a common and informed reference for newcomers and experienced researchers willing to approach brain age estimation by using deep learning models
translated by 谷歌翻译
Accurate diagnosis of Alzheimer's disease (AD) is both challenging and time consuming. With a systematic approach for early detection and diagnosis of AD, steps can be taken towards the treatment and prevention of the disease. This study explores the practical application of deep learning models for diagnosis of AD. Due to computational complexity, large training times and limited availability of labelled dataset, a 3D full brain CNN (convolutional neural network) is not commonly used, and researchers often prefer 2D CNN variants. In this study, full brain 3D version of well-known 2D CNNs were designed, trained and tested for diagnosis of various stages of AD. Deep learning approach shows good performance in differentiating various stages of AD for more than 1500 full brain volumes. Along with classification, the deep learning model is capable of extracting features which are key in differentiating the various categories. The extracted features align with meaningful anatomical landmarks, that are currently considered important in identification of AD by experts. An ensemble of all the algorithm was also tested and the performance of the ensemble algorithm was superior to any individual algorithm, further improving diagnosis ability. The 3D versions of the trained CNNs and their ensemble have the potential to be incorporated in software packages that can be used by physicians/radiologists to assist them in better diagnosis of AD.
translated by 谷歌翻译
我们介绍了用于分析功能磁共振成像(FMRI)数据的TFF变压器框架。TFF采用基于变压器的架构和两阶段培训方法。首先,自我监督培训适用于FMRI扫描的集合,其中模型培训用于重建3D卷数据。其次,预训练模型在特定任务上进行了微调,利用地面真理标签。我们的结果显示了各种FMRI任务的最先进的性能,包括年龄和性别预测,以及精神分裂症认可。
translated by 谷歌翻译
Late-life depression (LLD) is a highly prevalent mood disorder occurring in older adults and is frequently accompanied by cognitive impairment (CI). Studies have shown that LLD may increase the risk of Alzheimer's disease (AD). However, the heterogeneity of presentation of geriatric depression suggests that multiple biological mechanisms may underlie it. Current biological research on LLD progression incorporates machine learning that combines neuroimaging data with clinical observations. There are few studies on incident cognitive diagnostic outcomes in LLD based on structural MRI (sMRI). In this paper, we describe the development of a hybrid representation learning (HRL) framework for predicting cognitive diagnosis over 5 years based on T1-weighted sMRI data. Specifically, we first extract prediction-oriented MRI features via a deep neural network, and then integrate them with handcrafted MRI features via a Transformer encoder for cognitive diagnosis prediction. Two tasks are investigated in this work, including (1) identifying cognitively normal subjects with LLD and never-depressed older healthy subjects, and (2) identifying LLD subjects who developed CI (or even AD) and those who stayed cognitively normal over five years. To the best of our knowledge, this is among the first attempts to study the complex heterogeneous progression of LLD based on task-oriented and handcrafted MRI features. We validate the proposed HRL on 294 subjects with T1-weighted MRIs from two clinically harmonized studies. Experimental results suggest that the HRL outperforms several classical machine learning and state-of-the-art deep learning methods in LLD identification and prediction tasks.
translated by 谷歌翻译
用于预测神经影像数据的深度学习算法在各种应用中显示出巨大的希望。先前的工作表明,利用数据的3D结构的深度学习模型可以在几个学习任务上胜过标准机器学习。但是,该领域的大多数先前研究都集中在成年人的神经影像学数据上。在一项大型纵向发展研究的青少年大脑和认知发展(ABCD)数据集中,我们检查了结构性MRI数据,以预测性别并确定与性别相关的大脑结构变化。结果表明,性别预测准确性异常高(> 97%),训练时期> 200,并且这种准确性随着年龄的增长而增加。大脑区域被确定为研究的任务中最歧视性的,包括主要的额叶区域和颞叶。当评估年龄增加两年的性别预测变化时,揭示了一组更广泛的视觉,扣带和孤立区域。我们的发现表明,即使在较小的年龄范围内,也显示出与性别相关的结构变化模式。这表明,通过查看这些变化与不同的行为和环境因素如何相关,可以研究青春期大脑如何变化。
translated by 谷歌翻译
发现采用时间分离技术(TST)的基于模型的重建可以使用C臂锥束计算机断层扫描(CBCT)改善肝脏的动态灌注成像。要使用从CT灌注数据中提取的先验知识应用TST,应从CT扫描中准确分割肝脏。需要对主要和基于模型的CBCT数据进行重建,以正确可视化和解释灌注图。这项研究提出了Turbolift Learning,该学习按照培训CT,CBCT,CBCT,CBCT TST的顺序训练多尺度关注的多尺度注意力,UNET串行序列上的不同肝脏细分任务 - 使先前的培训作为前培训作为预训练阶段的阶段随后的问题 - 解决培训数据集数量有限的问题。对于CBCT TST的肝脏分割的最终任务,提议的方法的总骰子得分为0.874 $ \ pm $ 0.031和0.905 $ \ pm $ \ $ \ $ 0.007,分别为6倍和4倍的交叉验证实验 - 获得统计上显着的改进 - 在模型上,该模型仅接受该任务。实验表明,涡轮增压不仅提高了模型的整体性能,而且还使其与源自栓塞材料和截断物品的人工制品具有稳健性。此外,深入分析确认了分割任务的顺序。本文显示了从CT,CBCT和CBCT TST分割肝脏的潜力,从可用的有限培训数据中学习,将来可能会用于可视化和评估灌注图的肝病评估。 。
translated by 谷歌翻译
预训练在机器学习的不同领域表现出成功,例如计算机视觉(CV),自然语言处理(NLP)和医学成像。但是,尚未完全探索用于临床数据分析。即使记录了大量的电子健康记录(EHR)数据,但如果数据收集到小型医院或处理罕见疾病的交易,数据和标签也可能稀缺。在这种情况下,对较大的EHR数据进行预训练可以改善模型性能。在本文中,我们将无监督的预培训应用于异质的多模式EHR数据,以预测患者。为了对这些数据进行建模,我们利用大量的人群图表。我们首先设计基于图形变压器的网络体系结构,旨在处理EHR数据中发生的各种输入特征类型,例如连续,离散和时间序列特征,从而允许更好的多模式数据融合。此外,我们设计基于蒙版的插入方法的预训练方法,以在对不同的最终任务进行微调之前对网络进行预培训。预训练是以一种完全无监督的方式进行的,这为未来具有不同任务和类似方式的大型公共数据集预先培训奠定了基础。我们在两个患者记录的医学数据集(Tadpole和Mimic-III)上测试我们的方法,包括成像和非成像功能以及不同的预测任务。我们发现,我们提出的基于图形的预训练方法有助于在人群水平上对数据进行建模,并进一步改善Mimic的AUC方面的AUC,平均AUC的性能,而Tadpole则为7.64%。
translated by 谷歌翻译
许多领域的研究表明,转移学习(TL)非常适合提高具有少量样品的数据集中深度学习(DL)模型的性能。这种经验成功引发了对具有功能神经影像数据的认知解码分析的应用的兴趣。这里,我们系统地评估了从全脑功能磁共振成像(FMRI)数据的认知状态(例如,观看面部或房屋图像)的解码的TL。我们首先在大型公共FMRI数据集中预先列出两个DL架构,随后在独立实验任务和完全独立的数据集中评估其性能。预先训练的模型始终如一地达到更高的解码精度,并且通常需要较少的训练时间和数据,而不是模型变形,这些模型变体没有预先接受培训,明确强调预制培训的好处。我们证明,这些益处是由于预先训练的模型在使用新数据培训时重用了许多学习功能的这些益处,从而深入了解导致预训练的好处的机制。然而,在解释预先训练模型的解码决策时,我们还通过DL模型对全脑认知解码进行了差别挑战,因为这些已经学会了在不可预见的情况下利用FMRI数据和识别单个认知状态的违反直觉方式。
translated by 谷歌翻译
胸部射线照相是一种相对便宜,广泛的医疗程序,可传达用于进行诊断决策的关键信息。胸部X射线几乎总是用于诊断呼吸系统疾病,如肺炎或最近的Covid-19。在本文中,我们提出了一个自我监督的深神经网络,其在未标记的胸部X射线数据集上掠夺。学习的陈述转移到下游任务 - 呼吸系统疾病的分类。在四个公共数据集获得的结果表明,我们的方法在不需要大量标记的培训数据的情况下产生竞争力。
translated by 谷歌翻译
在这里,我们提出了一种用于多模式神经影像融合学习(HGM)的异质图形神经网络。传统的基于GNN的模型通常假设大脑网络是具有单一类型节点和边缘的均匀图形。然而,巨大的文献已经显示出人脑的异质性,特别是在两个半球之间。均匀脑网络不足以模拟复杂的脑状态。因此,在这项工作中,我们首先用多型节点(即左右半球节点)和多型边缘(即半球形边缘)来模拟大脑网络作为异质图。此外,我们还提出了一种基于Hetergoneou Brain网络的自我监督的预训练策略,以解决由于复杂的模型和小样本大小而过度的问题。我们在两个数据集合的结果显示出拟议模型的优越性,以疾病预测任务的其他多模型方法。此外,消融实验表明,我们具有预训练策略的模型可以减轻训练样本大小有限的问题。
translated by 谷歌翻译
视网膜光学相干断层扫描(OCT)和光学相干断层扫描(OCTA)是(早期)诊断阿尔茨海默氏病(AD)的有前途的工具。这些非侵入性成像技术比替代神经影像工具更具成本效益,更容易获得。但是,即使对于训练有素的从业人员来说,解释和分类OCT设备进行的多层扫描也是耗时和挑战。关于机器学习和深度学习方法的调查,涉及对诸如青光眼等各种疾病的OCT扫描自动分析。但是,目前的文献缺乏对使用OCT或OCTA诊断阿尔茨海默氏病或​​认知障碍的广泛调查。这促使我们进行了针对需要介绍该问题的机器/深度学习科学家或从业者的全面调查。本文包含1)对阿尔茨海默氏病和认知障碍的医学背景介绍及其使用OCT和八八片成像方式的诊断,2)从自动分析的角度审查有关该问题的各种技术建议和子问题的回顾,3 )对最近的深度学习研究和可用的OCT/OCTA数据集的系统综述,旨在诊断阿尔茨海默氏病和认知障碍。对于后者,我们使用发布或灭亡软件来搜索来自Scopus,PubMed和Web Science等各种来源的相关研究。我们遵循PRISMA方法筛选了3073参考的初始库,并确定了直接针对AD诊断的十项相关研究(n = 10,3073分)。我们认为缺乏开放的OCT/OCTA数据集(关于阿尔茨海默氏病)是阻碍该领域进展的主要问题。
translated by 谷歌翻译
在这项工作中,我们使用功能磁共振成像(fMRI)专注于具有挑战性的任务,神经疾病分类。在基于人群的疾病分析中,图卷积神经网络(GCN)取得了显着的成功。但是,这些成就与丰富的标记数据密不可分,对虚假信号敏感。为了改善在标签有效的设置下的fMRI表示学习和分类,我们建议在GCN上使用新颖的,理论驱动的自我监督学习(SSL)框架,即在FMRI分析门上用于时间自我监督学习的CCA。具体而言,要求设计合适有效的SSL策略来提取fMRI的形成和鲁棒特征。为此,我们研究了FMRI动态功能连接(FC)的几种新的图表增强策略,用于SSL培训。此外,我们利用规范相关分析(CCA)在不同的时间嵌入中,并呈现理论含义。因此,这产生了一个新颖的两步GCN学习程序,该过程包括在未标记的fMRI人群图上的(i)SSL组成,并且(ii)在小标记的fMRI数据集上进行了微调,以进行分类任务。我们的方法在两个独立的fMRI数据集上进行了测试,这表明自闭症和痴呆症诊断方面表现出色。
translated by 谷歌翻译