已经尝试通过融合立体声摄像机图像和激光镜传感器数据或使用LIDAR进行预训练,而仅用于测试的单眼图像来检测3D对象,但是由于精确度较低而仅尝试使用单眼图像序列的尝试较少。另外,当仅使用单眼图像的深度预测时,只能预测尺度不一致的深度,这就是研究人员不愿单独使用单眼图像的原因。因此,我们提出了一种通过仅使用单眼图像序列来预测绝对深度和检测3D对象的方法,通过启用检测网络和深度预测网络的端到端学习。结果,所提出的方法超过了Kitti 3D数据集中性能的其他现有方法。即使在训练期间一起使用单眼图像和3D激光雷达以提高性能,与使用相同输入的其他方法相比,我们的展览也是最佳性能。此外,端到端学习不仅可以改善深度预测性能,而且还可以实现绝对深度预测,因为我们的网络利用了这样一个事实,即3D对象(例如汽车)的大小由大约大小确定。
translated by 谷歌翻译
映射和3D检测是基于视觉的机器人和自行车的两个主要问题。虽然以前的作用仅在分别关注每项任务时,我们通过将具有鲁棒深度估计和第一个“伪激光符号”点云的间隙桥接来展示一个创新和有效的多任务深度学习框架(SM3D),用于同时映射和3D检测。时间。映射模块需要连续的单手抄帧以产生深度和姿态估计。在3D检测模块中,将深度估计投射到3D空间中以产生“伪激光雷达”点云,其中基于LIDAR的3D检测器可以在用于车辆3D检测和定位的点云上利用。通过两种模块的端到端训练,所提出的映射和3D检测方法分别优于最先进的基线,分别以准确度大于10.0%和13.2%。在实现更好的准确性的同时,我们的单眼多任务SM3D比纯立体声3D探测器快2倍以上,而且分别使用两个模块快28.3%。
translated by 谷歌翻译
3D object detection is an essential task in autonomous driving. Recent techniques excel with highly accurate detection rates, provided the 3D input data is obtained from precise but expensive LiDAR technology. Approaches based on cheaper monocular or stereo imagery data have, until now, resulted in drastically lower accuracies -a gap that is commonly attributed to poor image-based depth estimation. However, in this paper we argue that it is not the quality of the data but its representation that accounts for the majority of the difference. Taking the inner workings of convolutional neural networks into consideration, we propose to convert image-based depth maps to pseudo-LiDAR representations -essentially mimicking the LiDAR signal. With this representation we can apply different existing LiDAR-based detection algorithms. On the popular KITTI benchmark, our approach achieves impressive improvements over the existing state-of-the-art in image-based performance -raising the detection accuracy of objects within the 30m range from the previous state-of-the-art of 22% to an unprecedented 74%. At the time of submission our algorithm holds the highest entry on the KITTI 3D object detection leaderboard for stereo-image-based approaches. Our code is publicly available at https: //github.com/mileyan/pseudo_lidar.
translated by 谷歌翻译
大多数自治车辆都配备了LIDAR传感器和立体声相机。前者非常准确,但产生稀疏数据,而后者是密集的,具有丰富的纹理和颜色信息,但难以提取来自的强大的3D表示。在本文中,我们提出了一种新的数据融合算法,将准确的点云与致密的,但不太精确的点云组合在立体对。我们开发一个框架,将该算法集成到各种3D对象检测方法中。我们的框架从两个RGB图像中的2D检测开始,计算截肢和它们的交叉点,从立体声图像创建伪激光雷达数据,并填补了LIDAR数据缺少密集伪激光器的交叉区域的部分要点。我们训练多个3D对象检测方法,并表明我们的融合策略一致地提高了探测器的性能。
translated by 谷歌翻译
Monocular 3D object detection is a key problem for autonomous vehicles, as it provides a solution with simple configuration compared to typical multi-sensor systems. The main challenge in monocular 3D detection lies in accurately predicting object depth, which must be inferred from object and scene cues due to the lack of direct range measurement. Many methods attempt to directly estimate depth to assist in 3D detection, but show limited performance as a result of depth inaccuracy. Our proposed solution, Categorical Depth Distribution Network (CaDDN), uses a predicted categorical depth distribution for each pixel to project rich contextual feature information to the appropriate depth interval in 3D space. We then use the computationally efficient bird's-eye-view projection and single-stage detector to produce the final output detections. We design CaDDN as a fully differentiable end-to-end approach for joint depth estimation and object detection. We validate our approach on the KITTI 3D object detection benchmark, where we rank 1 st among published monocular methods. We also provide the first monocular 3D detection results on the newly released Waymo Open Dataset. We provide a code release for CaDDN which is made available here.
translated by 谷歌翻译
3D场景流动表征了当前时间的点如何流到3D欧几里得空间中的下一次,该空间具有自主推断场景中所有对象的非刚性运动的能力。从图像估算场景流的先前方法具有局限性,该方法通过分别估计光流和差异来划分3D场景流的整体性质。学习3D场景从点云流动也面临着综合数据和真实数据与LIDAR点云的稀疏性之间差距的困难。在本文中,利用生成的密集深度图来获得显式的3D坐标,该坐标可直接从2D图像中学习3D场景流。通过将2D像素的密度性质引入3D空间,可以改善预测场景流的稳定性。通过统计方法消除了生成的3D点云中的离群值,以削弱噪声点对3D场景流估计任务的影响。提出了差异一致性损失,以实现3D场景流的更有效的无监督学习。比较了现实世界图像上3D场景流的自我监督学习方法与在综合数据集中学习的多种方法和在LIDAR点云上学习的方法。显示多个场景流量指标的比较可以证明引入伪LIDAR点云到场景流量估计的有效性和优势。
translated by 谷歌翻译
Compared to typical multi-sensor systems, monocular 3D object detection has attracted much attention due to its simple configuration. However, there is still a significant gap between LiDAR-based and monocular-based methods. In this paper, we find that the ill-posed nature of monocular imagery can lead to depth ambiguity. Specifically, objects with different depths can appear with the same bounding boxes and similar visual features in the 2D image. Unfortunately, the network cannot accurately distinguish different depths from such non-discriminative visual features, resulting in unstable depth training. To facilitate depth learning, we propose a simple yet effective plug-and-play module, One Bounding Box Multiple Objects (OBMO). Concretely, we add a set of suitable pseudo labels by shifting the 3D bounding box along the viewing frustum. To constrain the pseudo-3D labels to be reasonable, we carefully design two label scoring strategies to represent their quality. In contrast to the original hard depth labels, such soft pseudo labels with quality scores allow the network to learn a reasonable depth range, boosting training stability and thus improving final performance. Extensive experiments on KITTI and Waymo benchmarks show that our method significantly improves state-of-the-art monocular 3D detectors by a significant margin (The improvements under the moderate setting on KITTI validation set are $\mathbf{1.82\sim 10.91\%}$ mAP in BEV and $\mathbf{1.18\sim 9.36\%}$ mAP in 3D}. Codes have been released at https://github.com/mrsempress/OBMO.
translated by 谷歌翻译
伪LIDAR表示的建议显着缩小了基于视觉的基于视觉激光痛的3D对象检测之间的差距。但是,当前的研究仅专注于通过利用复杂且耗时的神经网络来推动伪LIDAR的准确性提高。很少探索伪LIDAR代表的深刻特征来获得促进机会。在本文中,我们深入研究伪激光雷达表示,并认为3D对象检测的性能并不完全取决于高精度立体声深度估计。我们证明,即使对于不可靠的深度估计,通过适当的数据处理和精炼,它也可以达到可比的3D对象检测准确性。有了这一发现,我们进一步表明了使用伪大部分系统中快速但不准确的立体声匹配算法来实现低潜伏期响应的可能性。在实验中,我们开发了一个具有功能较低的立体声匹配预测指标的系统,并采用了提出的改进方案来提高准确性。对KITTI基准测试的评估表明,所提出的系统仅使用23毫秒的计算来实现最先进方法的竞争精度,这表明它是部署到真实CAR-HOLD应用程序的合适候选者。
translated by 谷歌翻译
由于其在自主驾驶中的应用,因此基于单眼图像的3D感知已成为一个活跃的研究领域。与基于激光雷达的技术相比,单眼3D感知(包括检测和跟踪)的方法通常会产生较低的性能。通过系统的分析,我们确定了每个对象深度估计精度是界限性能的主要因素。在这种观察过程中,我们提出了一种多级融合方法,该方法将不同的表示(RGB和伪LIDAR)和跨多个对象(Tracklets)的时间信息结合在一起,以增强对目标深度估计。我们提出的融合方法实现了Waymo打开数据集,KITTI检测数据集和Kitti MOT数据集的每个对象深度估计的最新性能。我们进一步证明,通过简单地用融合增强的深度替换估计的深度,我们可以在单眼3D感知任务(包括检测和跟踪)方面取得重大改进。
translated by 谷歌翻译
由于LIDAR传感器捕获的精确深度信息缺乏准确的深度信息,单眼3D对象检测是一个关键而挑战的自主驾驶任务。在本文中,我们提出了一种立体引导的单目3D对象检测网络,称为SGM3D,其利用立体图像提取的鲁棒3D特征来增强从单眼图像中学到的特征。我们创新地研究了多粒度域适配模块(MG-DA)以利用网络的能力,以便仅基于单手套提示产生立体模拟功能。利用粗均衡特征级以及精细锚级域适配,以引导单眼分支。我们介绍了一个基于IOO匹配的对齐模块(iou-ma),用于立体声和单眼域之间的对象级域适应,以减轻先前阶段中的不匹配。我们对最具挑战性的基蒂和Lyft数据集进行了广泛的实验,并实现了新的最先进的性能。此外,我们的方法可以集成到许多其他单眼的方法中以提高性能而不引入任何额外的计算成本。
translated by 谷歌翻译
鉴于其经济性与多传感器设置相比,从单眼输入中感知的3D对象对于机器人系统至关重要。它非常困难,因为单个图像无法提供预测绝对深度值的任何线索。通过双眼方法进行3D对象检测,我们利用了相机自我运动提供的强几何结构来进行准确的对象深度估计和检测。我们首先对此一般的两视案例进行了理论分析,并注意两个挑战:1)来自多个估计的累积错误,这些估计使直接预测棘手; 2)由静态摄像机和歧义匹配引起的固有难题。因此,我们建立了具有几何感知成本量的立体声对应关系,作为深度估计的替代方案,并以单眼理解进一步补偿了它,以解决第二个问题。我们的框架(DFM)命名为深度(DFM),然后使用已建立的几何形状将2D图像特征提升到3D空间并检测到其3D对象。我们还提出了一个无姿势的DFM,以使其在摄像头不可用时可用。我们的框架在Kitti基准测试上的优于最先进的方法。详细的定量和定性分析也验证了我们的理论结论。该代码将在https://github.com/tai-wang/depth-from-motion上发布。
translated by 谷歌翻译
由于缺乏深度信息,单眼3D对象检测在自主驾驶中非常具有挑战性。本文提出了一种基于多尺度深度分层的单眼单目眼3D对象检测算法,它使用锚定方法检测每像素预测中的3D对象。在所提出的MDS-Net中,开发了一种新的基于深度的分层结构,以通过在对象的深度和图像尺寸之间建立数学模型来改善网络的深度预测能力。然后开发出新的角度损耗功能,以进一步提高角度预测的精度并提高训练的收敛速度。最终在后处理阶段最终应用优化的软,以调整候选盒的置信度。基蒂基准测试的实验表明,MDS-Net在3D检测中优于现有的单目3D检测方法,并在满足实时要求时进行3D检测和BEV检测任务。
translated by 谷歌翻译
对于许多应用程序,包括自动驾驶,机器人抓握和增强现实,单眼3D对象检测是一项基本但非常重要的任务。现有的领先方法倾向于首先估算输入图像的深度,并基于点云检测3D对象。该例程遭受了深度估计和对象检测之间固有的差距。此外,预测误差积累也会影响性能。在本文中,提出了一种名为MonopCN的新方法。引入单频道的洞察力是,我们建议在训练期间模拟基于点云的探测器的特征学习行为。因此,在推理期间,学习的特征和预测将与基于点云的检测器相似。为了实现这一目标,我们建议一个场景级仿真模块,一个ROI级别的仿真模块和一个响应级仿真模块,这些模块逐渐用于检测器的完整特征学习和预测管道。我们将我们的方法应用于著名的M3D-RPN检测器和CADDN检测器,并在Kitti和Waymo Open数据集上进行了广泛的实验。结果表明,我们的方法始终提高不同边缘的不同单眼探测器的性能,而无需更改网络体系结构。我们的方法最终达到了最先进的性能。
translated by 谷歌翻译
自我监督的单眼深度预测提供了一种经济有效的解决方案,以获得每个像素的3D位置。然而,现有方法通常会导致不满意的准确性,这对于自治机器人至关重要。在本文中,我们提出了一种新的两级网络,通过利用低成本稀疏(例如4梁)LIDAR来推进自我监督单眼密集深度学习。与使用稀疏激光雷达的现有方法不同,主要以耗时的迭代后处理,我们的模型保留单眼图像特征和稀疏的LIDAR功能,以预测初始深度图。然后,有效的前馈细化网络进一步设计为校正伪3D空间中这些初始深度图中的错误,其具有实时性能。广泛的实验表明,我们所提出的模型显着优于所有最先进的自我监控方法,以及基于稀疏的激光器的方法,以及对自我监督单眼深度预测和完成任务。通过精确的密集深度预测,我们的模型优于基于最先进的稀疏激光雷达的方法(伪LIDAR ++)在Kitti排行榜上下游任务单眼3D对象检测超过68%。代码可在https://github.com/autoailab/fusiondepth获得
translated by 谷歌翻译
3D object detection is vital as it would enable us to capture objects' sizes, orientation, and position in the world. As a result, we would be able to use this 3D detection in real-world applications such as Augmented Reality (AR), self-driving cars, and robotics which perceive the world the same way we do as humans. Monocular 3D Object Detection is the task to draw 3D bounding box around objects in a single 2D RGB image. It is localization task but without any extra information like depth or other sensors or multiple images. Monocular 3D object detection is an important yet challenging task. Beyond the significant progress in image-based 2D object detection, 3D understanding of real-world objects is an open challenge that has not been explored extensively thus far. In addition to the most closely related studies.
translated by 谷歌翻译
对于单眼深度估计,获取真实数据的地面真相并不容易,因此通常使用监督的合成数据采用域适应方法。但是,由于缺乏实际数据的监督,这仍然可能会导致较大的域间隙。在本文中,我们通过从真实数据中生成可靠的伪基础真理来开发一个域适应框架,以提供直接的监督。具体而言,我们提出了两种用于伪标记的机制:1)通过测量图像具有相同内容但不同样式的深度预测的一致性,通过测量深度预测的一致性; 2)通过点云完成网络的3D感知伪标记,该网络学会完成3D空间中的深度值,从而在场景中提供更多的结构信息,以完善并生成更可靠的伪标签。在实验中,我们表明我们的伪标记方法改善了各种环境中的深度估计,包括在训练过程中使用立体声对。此外,该提出的方法对现实世界数据集中的几种最新无监督域的适应方法表现出色。
translated by 谷歌翻译
Monocular depth estimation has been actively studied in fields such as robot vision, autonomous driving, and 3D scene understanding. Given a sequence of color images, unsupervised learning methods based on the framework of Structure-From-Motion (SfM) simultaneously predict depth and camera relative pose. However, dynamically moving objects in the scene violate the static world assumption, resulting in inaccurate depths of dynamic objects. In this work, we propose a new method to address such dynamic object movements through monocular 3D object detection. Specifically, we first detect 3D objects in the images and build the per-pixel correspondence of the dynamic pixels with the detected object pose while leaving the static pixels corresponding to the rigid background to be modeled with camera motion. In this way, the depth of every pixel can be learned via a meaningful geometry model. Besides, objects are detected as cuboids with absolute scale, which is used to eliminate the scale ambiguity problem inherent in monocular vision. Experiments on the KITTI depth dataset show that our method achieves State-of-The-Art performance for depth estimation. Furthermore, joint training of depth, camera motion and object pose also improves monocular 3D object detection performance. To the best of our knowledge, this is the first work that allows a monocular 3D object detection network to be fine-tuned in a self-supervised manner.
translated by 谷歌翻译
基于最新的激光痛的3D对象检测方法依赖于监督学习和大型标记数据集。但是,注释LiDAR数据是资源消耗的,仅取决于监督的学习限制了训练有素的模型的适用性。自我监督的培训策略可以通过学习下游3D视觉任务的通用点云主链模型来减轻这些问题。在此背景下,我们显示了自我监督的多帧流程表示与单帧3D检测假设之间的关系。我们的主要贡献利用了流动和运动表示,并将自我保护的主链与有监督的3D检测头结合在一起。首先,自我监督的场景流估计模型通过循环一致性进行了训练。然后,该模型的点云编码器用作单帧3D对象检测头模型的骨干。第二个3D对象检测模型学会利用运动表示来区分表现出不同运动模式的动态对象。 Kitti和Nuscenes基准的实验表明,提出的自我监管的预训练可显着提高3D检测性能。 https://github.com/emecercelik/ssl-3d-detection.git
translated by 谷歌翻译
单眼3D对象检测是自动驾驶和计算机视觉社区中的一项挑战。作为一种常见的做法,大多数以前的作品都使用手动注释的3D盒标签,其中注释过程很昂贵。在本文中,我们发现在单眼3D检测中,精确和仔细注释的标签可能是不必要的,这是一个有趣且违反直觉的发现。与使用地面真相标签相比,使用随机干扰的粗糙标签,检测器可以达到非常接近的精度。我们深入研究了这种潜在的机制,然后从经验上发现:关于标签精度,与标签的其他部分相比,标签中的3D位置部分是优选的。由上面的结论和考虑到精确的LIDAR 3D测量的动机,我们提出了一个简单有效的框架,称为LiDAR Point Cloud引导的单眼3D对象检测(LPCG)。该框架能够降低注释成本或大大提高检测准确性,而无需引入额外的注释成本。具体而言,它从未标记的LIDAR点云生成伪标签。得益于3D空间中精确的LIDAR 3D测量值,由于其3D位置信息是精确的,因此,此类伪标签可以替换单眼3D检测器训练中手动注释的标签。可以将LPCG应用于任何单眼3D检测器中,以完全使用自动驾驶系统中的大量未标记数据。结果,在KITTI基准测试中,我们在单眼3D和BEV(Bird's-eye-tive)检测中都获得了明显差的检测。在Waymo基准测试中,我们使用10%标记数据的方法使用100%标记的数据获得了与基线探测器的可比精度。这些代码在https://github.com/spengliang/lpcg上发布。
translated by 谷歌翻译
在现有方法中,LIDAR的探测器显示出卓越的性能,但视觉探测器仍被广泛用于其价格优势。从惯例上讲,视觉检验的任务主要依赖于连续图像的输入。但是,探测器网络学习图像提供的异性几何信息非常复杂。在本文中,将伪LIDAR的概念引入了探测器中以解决此问题。伪LIDAR点云背面项目由图像生成的深度图中的3D点云,这改变了图像表示的方式。与立体声图像相比,立体声匹配网络生成的伪lidar点云可以得到显式的3D坐标。由于在3D空间中发生了6个自由度(DOF)姿势转换,因此伪宽点云提供的3D结构信息比图像更直接。与稀疏的激光雷达相比,伪驱动器具有较密集的点云。为了充分利用伪LIDAR提供的丰富点云信息,采用了投射感知的探测管道。以前的大多数基于激光雷达的算法从点云中采样了8192点,作为探视网络的输入。投影感知的密集探测管道采用从图像产生的所有伪lidar点云,除了误差点作为网络的输入。在图像中充分利用3D几何信息时,图像中的语义信息也用于探视任务中。 2D-3D的融合是在仅基于图像的进程中实现的。 Kitti数据集的实验证明了我们方法的有效性。据我们所知,这是使用伪LIDAR的第一种视觉探光法。
translated by 谷歌翻译