映射和3D检测是基于视觉的机器人和自行车的两个主要问题。虽然以前的作用仅在分别关注每项任务时,我们通过将具有鲁棒深度估计和第一个“伪激光符号”点云的间隙桥接来展示一个创新和有效的多任务深度学习框架(SM3D),用于同时映射和3D检测。时间。映射模块需要连续的单手抄帧以产生深度和姿态估计。在3D检测模块中,将深度估计投射到3D空间中以产生“伪激光雷达”点云,其中基于LIDAR的3D检测器可以在用于车辆3D检测和定位的点云上利用。通过两种模块的端到端训练,所提出的映射和3D检测方法分别优于最先进的基线,分别以准确度大于10.0%和13.2%。在实现更好的准确性的同时,我们的单眼多任务SM3D比纯立体声3D探测器快2倍以上,而且分别使用两个模块快28.3%。
translated by 谷歌翻译
已经尝试通过融合立体声摄像机图像和激光镜传感器数据或使用LIDAR进行预训练,而仅用于测试的单眼图像来检测3D对象,但是由于精确度较低而仅尝试使用单眼图像序列的尝试较少。另外,当仅使用单眼图像的深度预测时,只能预测尺度不一致的深度,这就是研究人员不愿单独使用单眼图像的原因。因此,我们提出了一种通过仅使用单眼图像序列来预测绝对深度和检测3D对象的方法,通过启用检测网络和深度预测网络的端到端学习。结果,所提出的方法超过了Kitti 3D数据集中性能的其他现有方法。即使在训练期间一起使用单眼图像和3D激光雷达以提高性能,与使用相同输入的其他方法相比,我们的展览也是最佳性能。此外,端到端学习不仅可以改善深度预测性能,而且还可以实现绝对深度预测,因为我们的网络利用了这样一个事实,即3D对象(例如汽车)的大小由大约大小确定。
translated by 谷歌翻译
3D object detection is an essential task in autonomous driving. Recent techniques excel with highly accurate detection rates, provided the 3D input data is obtained from precise but expensive LiDAR technology. Approaches based on cheaper monocular or stereo imagery data have, until now, resulted in drastically lower accuracies -a gap that is commonly attributed to poor image-based depth estimation. However, in this paper we argue that it is not the quality of the data but its representation that accounts for the majority of the difference. Taking the inner workings of convolutional neural networks into consideration, we propose to convert image-based depth maps to pseudo-LiDAR representations -essentially mimicking the LiDAR signal. With this representation we can apply different existing LiDAR-based detection algorithms. On the popular KITTI benchmark, our approach achieves impressive improvements over the existing state-of-the-art in image-based performance -raising the detection accuracy of objects within the 30m range from the previous state-of-the-art of 22% to an unprecedented 74%. At the time of submission our algorithm holds the highest entry on the KITTI 3D object detection leaderboard for stereo-image-based approaches. Our code is publicly available at https: //github.com/mileyan/pseudo_lidar.
translated by 谷歌翻译
鉴于其经济性与多传感器设置相比,从单眼输入中感知的3D对象对于机器人系统至关重要。它非常困难,因为单个图像无法提供预测绝对深度值的任何线索。通过双眼方法进行3D对象检测,我们利用了相机自我运动提供的强几何结构来进行准确的对象深度估计和检测。我们首先对此一般的两视案例进行了理论分析,并注意两个挑战:1)来自多个估计的累积错误,这些估计使直接预测棘手; 2)由静态摄像机和歧义匹配引起的固有难题。因此,我们建立了具有几何感知成本量的立体声对应关系,作为深度估计的替代方案,并以单眼理解进一步补偿了它,以解决第二个问题。我们的框架(DFM)命名为深度(DFM),然后使用已建立的几何形状将2D图像特征提升到3D空间并检测到其3D对象。我们还提出了一个无姿势的DFM,以使其在摄像头不可用时可用。我们的框架在Kitti基准测试上的优于最先进的方法。详细的定量和定性分析也验证了我们的理论结论。该代码将在https://github.com/tai-wang/depth-from-motion上发布。
translated by 谷歌翻译
Compared to typical multi-sensor systems, monocular 3D object detection has attracted much attention due to its simple configuration. However, there is still a significant gap between LiDAR-based and monocular-based methods. In this paper, we find that the ill-posed nature of monocular imagery can lead to depth ambiguity. Specifically, objects with different depths can appear with the same bounding boxes and similar visual features in the 2D image. Unfortunately, the network cannot accurately distinguish different depths from such non-discriminative visual features, resulting in unstable depth training. To facilitate depth learning, we propose a simple yet effective plug-and-play module, One Bounding Box Multiple Objects (OBMO). Concretely, we add a set of suitable pseudo labels by shifting the 3D bounding box along the viewing frustum. To constrain the pseudo-3D labels to be reasonable, we carefully design two label scoring strategies to represent their quality. In contrast to the original hard depth labels, such soft pseudo labels with quality scores allow the network to learn a reasonable depth range, boosting training stability and thus improving final performance. Extensive experiments on KITTI and Waymo benchmarks show that our method significantly improves state-of-the-art monocular 3D detectors by a significant margin (The improvements under the moderate setting on KITTI validation set are $\mathbf{1.82\sim 10.91\%}$ mAP in BEV and $\mathbf{1.18\sim 9.36\%}$ mAP in 3D}. Codes have been released at https://github.com/mrsempress/OBMO.
translated by 谷歌翻译
伪LIDAR表示的建议显着缩小了基于视觉的基于视觉激光痛的3D对象检测之间的差距。但是,当前的研究仅专注于通过利用复杂且耗时的神经网络来推动伪LIDAR的准确性提高。很少探索伪LIDAR代表的深刻特征来获得促进机会。在本文中,我们深入研究伪激光雷达表示,并认为3D对象检测的性能并不完全取决于高精度立体声深度估计。我们证明,即使对于不可靠的深度估计,通过适当的数据处理和精炼,它也可以达到可比的3D对象检测准确性。有了这一发现,我们进一步表明了使用伪大部分系统中快速但不准确的立体声匹配算法来实现低潜伏期响应的可能性。在实验中,我们开发了一个具有功能较低的立体声匹配预测指标的系统,并采用了提出的改进方案来提高准确性。对KITTI基准测试的评估表明,所提出的系统仅使用23毫秒的计算来实现最先进方法的竞争精度,这表明它是部署到真实CAR-HOLD应用程序的合适候选者。
translated by 谷歌翻译
真正的场景流量估计对于3D计算机视觉越来越重要。有些作品成功估计了LIDAR的真实3D场景流。然而,这些无处不在的和昂贵的传感器仍然不太可能被广泛配备用于真实应用。其他作品使用单眼图像来估计场景流,但它们的场景流量估计与比例模糊性归一化,其中需要额外的深度或点云原始事实来恢复实际规模。即使它们在2D中表现良好,这些作品也不提供准确可靠的3D估计。我们在Permutohedral格子上展示了深度学习的建筑 - Monoplflownet。与以前的所有作品不同,我们的monoplflown是第一个工作,其中仅使用两个连续的单眼图像作为输入,而深度和3D场景流程估计是实际规模的。我们的实际场景流量估计优于基于基于尺度的所有最先进的单眼图像基础的作品,并与Lidar方法相媲美。作为副产品,我们的实际深度估计也优于其他最先进的工作。
translated by 谷歌翻译
In this paper we propose to exploit multiple related tasks for accurate multi-sensor 3D object detection. Towards this goal we present an end-to-end learnable architecture that reasons about 2D and 3D object detection as well as ground estimation and depth completion. Our experiments show that all these tasks are complementary and help the network learn better representations by fusing information at various levels. Importantly, our approach leads the KITTI benchmark on 2D, 3D and bird's eye view object detection, while being real-time. * Equal contribution.† Work done as part of Uber AI Residency program.
translated by 谷歌翻译
由于其在自主驾驶中的应用,因此基于单眼图像的3D感知已成为一个活跃的研究领域。与基于激光雷达的技术相比,单眼3D感知(包括检测和跟踪)的方法通常会产生较低的性能。通过系统的分析,我们确定了每个对象深度估计精度是界限性能的主要因素。在这种观察过程中,我们提出了一种多级融合方法,该方法将不同的表示(RGB和伪LIDAR)和跨多个对象(Tracklets)的时间信息结合在一起,以增强对目标深度估计。我们提出的融合方法实现了Waymo打开数据集,KITTI检测数据集和Kitti MOT数据集的每个对象深度估计的最新性能。我们进一步证明,通过简单地用融合增强的深度替换估计的深度,我们可以在单眼3D感知任务(包括检测和跟踪)方面取得重大改进。
translated by 谷歌翻译
单眼3D对象检测是自主驾驶中的重要任务。在存在自我汽车姿势改变W.R.T的情况下,它可以很容易难以解决。地平面。由于道路平滑度和斜坡的轻微波动,这很常见。由于工业应用缺乏洞察力,开放数据集的现有方法忽略了相机姿势信息,这不可避免地导致探测器易受相机外在参数的影响。物体的扰动在工业产品最自主驾驶案件中非常受欢迎。为此,我们提出了一种捕获摄像机姿势的新方法,以配制无自脉扰动的检测器。具体地,所提出的框架通过检测消失点和地平线改变来预测相机外在参数。转换器旨在纠正潜在空间中的扰动特征。通过这样做,我们的3D探测器独立于外在参数变化,并在现实情况下产生准确的结果,例如坑道和不均匀的道路,几乎所有现有的单眼检测器都无法处理。实验证明我们的方法与基蒂3D和NUSCENES数据集的大型裕度相比,我们的方法与其他最先进的最先进。
translated by 谷歌翻译
对于许多应用程序,包括自动驾驶,机器人抓握和增强现实,单眼3D对象检测是一项基本但非常重要的任务。现有的领先方法倾向于首先估算输入图像的深度,并基于点云检测3D对象。该例程遭受了深度估计和对象检测之间固有的差距。此外,预测误差积累也会影响性能。在本文中,提出了一种名为MonopCN的新方法。引入单频道的洞察力是,我们建议在训练期间模拟基于点云的探测器的特征学习行为。因此,在推理期间,学习的特征和预测将与基于点云的检测器相似。为了实现这一目标,我们建议一个场景级仿真模块,一个ROI级别的仿真模块和一个响应级仿真模块,这些模块逐渐用于检测器的完整特征学习和预测管道。我们将我们的方法应用于著名的M3D-RPN检测器和CADDN检测器,并在Kitti和Waymo Open数据集上进行了广泛的实验。结果表明,我们的方法始终提高不同边缘的不同单眼探测器的性能,而无需更改网络体系结构。我们的方法最终达到了最先进的性能。
translated by 谷歌翻译
Monocular depth estimation has been actively studied in fields such as robot vision, autonomous driving, and 3D scene understanding. Given a sequence of color images, unsupervised learning methods based on the framework of Structure-From-Motion (SfM) simultaneously predict depth and camera relative pose. However, dynamically moving objects in the scene violate the static world assumption, resulting in inaccurate depths of dynamic objects. In this work, we propose a new method to address such dynamic object movements through monocular 3D object detection. Specifically, we first detect 3D objects in the images and build the per-pixel correspondence of the dynamic pixels with the detected object pose while leaving the static pixels corresponding to the rigid background to be modeled with camera motion. In this way, the depth of every pixel can be learned via a meaningful geometry model. Besides, objects are detected as cuboids with absolute scale, which is used to eliminate the scale ambiguity problem inherent in monocular vision. Experiments on the KITTI depth dataset show that our method achieves State-of-The-Art performance for depth estimation. Furthermore, joint training of depth, camera motion and object pose also improves monocular 3D object detection performance. To the best of our knowledge, this is the first work that allows a monocular 3D object detection network to be fine-tuned in a self-supervised manner.
translated by 谷歌翻译
Monocular 3D object detection is a key problem for autonomous vehicles, as it provides a solution with simple configuration compared to typical multi-sensor systems. The main challenge in monocular 3D detection lies in accurately predicting object depth, which must be inferred from object and scene cues due to the lack of direct range measurement. Many methods attempt to directly estimate depth to assist in 3D detection, but show limited performance as a result of depth inaccuracy. Our proposed solution, Categorical Depth Distribution Network (CaDDN), uses a predicted categorical depth distribution for each pixel to project rich contextual feature information to the appropriate depth interval in 3D space. We then use the computationally efficient bird's-eye-view projection and single-stage detector to produce the final output detections. We design CaDDN as a fully differentiable end-to-end approach for joint depth estimation and object detection. We validate our approach on the KITTI 3D object detection benchmark, where we rank 1 st among published monocular methods. We also provide the first monocular 3D detection results on the newly released Waymo Open Dataset. We provide a code release for CaDDN which is made available here.
translated by 谷歌翻译
在现有方法中,LIDAR的探测器显示出卓越的性能,但视觉探测器仍被广泛用于其价格优势。从惯例上讲,视觉检验的任务主要依赖于连续图像的输入。但是,探测器网络学习图像提供的异性几何信息非常复杂。在本文中,将伪LIDAR的概念引入了探测器中以解决此问题。伪LIDAR点云背面项目由图像生成的深度图中的3D点云,这改变了图像表示的方式。与立体声图像相比,立体声匹配网络生成的伪lidar点云可以得到显式的3D坐标。由于在3D空间中发生了6个自由度(DOF)姿势转换,因此伪宽点云提供的3D结构信息比图像更直接。与稀疏的激光雷达相比,伪驱动器具有较密集的点云。为了充分利用伪LIDAR提供的丰富点云信息,采用了投射感知的探测管道。以前的大多数基于激光雷达的算法从点云中采样了8192点,作为探视网络的输入。投影感知的密集探测管道采用从图像产生的所有伪lidar点云,除了误差点作为网络的输入。在图像中充分利用3D几何信息时,图像中的语义信息也用于探视任务中。 2D-3D的融合是在仅基于图像的进程中实现的。 Kitti数据集的实验证明了我们方法的有效性。据我们所知,这是使用伪LIDAR的第一种视觉探光法。
translated by 谷歌翻译
由于LIDAR传感器捕获的精确深度信息缺乏准确的深度信息,单眼3D对象检测是一个关键而挑战的自主驾驶任务。在本文中,我们提出了一种立体引导的单目3D对象检测网络,称为SGM3D,其利用立体图像提取的鲁棒3D特征来增强从单眼图像中学到的特征。我们创新地研究了多粒度域适配模块(MG-DA)以利用网络的能力,以便仅基于单手套提示产生立体模拟功能。利用粗均衡特征级以及精细锚级域适配,以引导单眼分支。我们介绍了一个基于IOO匹配的对齐模块(iou-ma),用于立体声和单眼域之间的对象级域适应,以减轻先前阶段中的不匹配。我们对最具挑战性的基蒂和Lyft数据集进行了广泛的实验,并实现了新的最先进的性能。此外,我们的方法可以集成到许多其他单眼的方法中以提高性能而不引入任何额外的计算成本。
translated by 谷歌翻译
We present an unsupervised learning framework for the task of monocular depth and camera motion estimation from unstructured video sequences. In common with recent work [10,14,16], we use an end-to-end learning approach with view synthesis as the supervisory signal. In contrast to the previous work, our method is completely unsupervised, requiring only monocular video sequences for training. Our method uses single-view depth and multiview pose networks, with a loss based on warping nearby views to the target using the computed depth and pose. The networks are thus coupled by the loss during training, but can be applied independently at test time. Empirical evaluation on the KITTI dataset demonstrates the effectiveness of our approach: 1) monocular depth performs comparably with supervised methods that use either ground-truth pose or depth for training, and 2) pose estimation performs favorably compared to established SLAM systems under comparable input settings.
translated by 谷歌翻译
深度估计,视觉探测器(VO)和Bird's-eye-view(BEV)场景布局估计提出了三个关键任务,这是驾驶场景感知的三个关键任务,这对于自动驾驶中运动计划和导航至关重要。尽管它们是彼此互补的,但先前的工作通常专注于每个任务,并且很少处理所有三个任务。一种幼稚的方法是以顺序或平行的方式独立实现它们,但是有很多缺点,即1)深度和vo结果遭受了固有的规模歧义问题; 2)BEV布局是从前视图像直接预测的,而无需使用任何与深度相关的信息,尽管深度图包含用于推断场景布局的有用几何线索。在本文中,我们通过提出一个名为jperceiver的新型关节感知框架来解决这些问题,该框架可以同时估算从单眼视频序列中估算尺度感知的深度和vo以及BEV布局。它利用了跨视图几何变换(CGT),以基于精心设计的量表损失来传播从道路布局到深度和VO的绝对尺度。同时,设计了一个跨视图和跨模式转移(CCT)模块,以通过注意机制利用深度线索来用于推理道路和车辆布局。可以以端到端的多任务学习方式对JPERCEIVER进行培训,其中CGT量表损失和CCT模块可以促进任务间知识转移以使每个任务的功能学习受益。关于Argoverse,Nuscenes和Kitti的实验表明,在准确性,模型大小和推理速度方面,JPEREVER在上述所有三个任务上的优越性。代码和模型可在〜\ href {https://github.com/sunnyhelen/jperceiver} {https://github.com/sunnyhelen/jperceiver}中获得。
translated by 谷歌翻译
3D场景流动表征了当前时间的点如何流到3D欧几里得空间中的下一次,该空间具有自主推断场景中所有对象的非刚性运动的能力。从图像估算场景流的先前方法具有局限性,该方法通过分别估计光流和差异来划分3D场景流的整体性质。学习3D场景从点云流动也面临着综合数据和真实数据与LIDAR点云的稀疏性之间差距的困难。在本文中,利用生成的密集深度图来获得显式的3D坐标,该坐标可直接从2D图像中学习3D场景流。通过将2D像素的密度性质引入3D空间,可以改善预测场景流的稳定性。通过统计方法消除了生成的3D点云中的离群值,以削弱噪声点对3D场景流估计任务的影响。提出了差异一致性损失,以实现3D场景流的更有效的无监督学习。比较了现实世界图像上3D场景流的自我监督学习方法与在综合数据集中学习的多种方法和在LIDAR点云上学习的方法。显示多个场景流量指标的比较可以证明引入伪LIDAR点云到场景流量估计的有效性和优势。
translated by 谷歌翻译
来自运动(SFM)的结构和地面相同估计对自动驾驶和其他机器人应用至关重要。最近,使用深神经网络分别用于SFM和同住估计的深度神经网络。然而,直接应用用于地面平面的现有方法可能会失败,因为道路通常是场景的一小部分。此外,深度SFM方法的性能仍然不如传统方法。在本文中,我们提出了一种方法,了解到以端到端的方式解决这两种问题,提高两者的性能。所提出的网络由深度CNN,姿势CNN和地面CNN组成。分别深度CNN和姿势 - CNN估计致密深度图和自我运动,求解SFM,而姿势 - CNN和地下CNN,接着是相同的相同层求解地面估计问题。通过强制SFM和同情侣估计结果之间的一致性,可以使用除了由搁板分段器提供的道路分割之外的光度损耗和单独的损耗来训练整个网络以结束到结束。综合实验是在基蒂基准上进行的,与各种最先进的方法相比,展示了有希望的结果。
translated by 谷歌翻译
We address the problem of depth and ego-motion estimation from image sequences. Recent advances in the domain propose to train a deep learning model for both tasks using image reconstruction in a self-supervised manner. We revise the assumptions and the limitations of the current approaches and propose two improvements to boost the performance of the depth and ego-motion estimation. We first use Lie group properties to enforce the geometric consistency between images in the sequence and their reconstructions. We then propose a mechanism to pay an attention to image regions where the image reconstruction get corrupted. We show how to integrate the attention mechanism in the form of attention gates in the pipeline and use attention coefficients as a mask. We evaluate the new architecture on the KITTI datasets and compare it to the previous techniques. We show that our approach improves the state-of-the-art results for ego-motion estimation and achieve comparable results for depth estimation.
translated by 谷歌翻译