机器学习模型在各种任务中取得了人力级别的性能。此成功以高成本的计算和存储开销,这使得机器学习算法难以在边缘设备上部署。通常,必须部分地牺牲精度,有利于在降低内存使用和能量消耗方面进行量化的性能。目前的方法通过减少参数的精度或通过消除冗余的方法压缩网络。在本文中,我们提出了通过贝叶斯框架的网络压缩的新洞察力。我们展示贝叶斯神经网络在模型参数中自动发现冗余,从而启用自压缩,这与通过网络层的不确定性传播链接。我们的实验结果表明,网络架构可以通过删除网络本身识别的参数来成功压缩,同时保持相同的准确度。
translated by 谷歌翻译
在不确定,嘈杂或对抗性环境中学习是深度神经网络(DNN)的具有挑战性的任务。我们提出了一种在贝叶斯估计和变分推理时构建的强大学习的新理论上和有效的方法。我们制定通过DNN层层的密度传播的问题,并使用集合密度传播(ENDP)方案来解决它。ENPP方法允许我们在贝叶斯DNN的层上传播变分概率分布的片段,使得能够估计模型输出的预测分布的平均值和协方差。我们使用Mnist和CiFar-10数据集的实验表明,训练有素的模型的鲁棒性与随机噪声和对抗性攻击的稳健性显着改善。
translated by 谷歌翻译
近似贝叶斯深度学习方法对于解决在智能系统中部署深度学习组件时,包括在智能系统中部署深度学习组件的几个问题,包括减轻过度自信的错误并提供增强的鲁棒性,从而超出分发示例。但是,现有近似贝叶斯推理方法的计算要求可以使它们不适合部署包括低功耗边缘设备的智能IOT系统。在本文中,我们为监督深度学习提供了一系列近似贝叶斯推理方法,并在应用这些方法对当前边缘硬件上的挑战和机遇。我们突出了几种潜在的解决方案来降低模型存储要求,提高计算可扩展性,包括模型修剪和蒸馏方法。
translated by 谷歌翻译
While machine learning is traditionally a resource intensive task, embedded systems, autonomous navigation, and the vision of the Internet of Things fuel the interest in resource-efficient approaches. These approaches aim for a carefully chosen trade-off between performance and resource consumption in terms of computation and energy. The development of such approaches is among the major challenges in current machine learning research and key to ensure a smooth transition of machine learning technology from a scientific environment with virtually unlimited computing resources into everyday's applications. In this article, we provide an overview of the current state of the art of machine learning techniques facilitating these real-world requirements. In particular, we focus on deep neural networks (DNNs), the predominant machine learning models of the past decade. We give a comprehensive overview of the vast literature that can be mainly split into three non-mutually exclusive categories: (i) quantized neural networks, (ii) network pruning, and (iii) structural efficiency. These techniques can be applied during training or as post-processing, and they are widely used to reduce the computational demands in terms of memory footprint, inference speed, and energy efficiency. We also briefly discuss different concepts of embedded hardware for DNNs and their compatibility with machine learning techniques as well as potential for energy and latency reduction. We substantiate our discussion with experiments on well-known benchmark datasets using compression techniques (quantization, pruning) for a set of resource-constrained embedded systems, such as CPUs, GPUs and FPGAs. The obtained results highlight the difficulty of finding good trade-offs between resource efficiency and predictive performance.
translated by 谷歌翻译
我们日常生活中的深度学习是普遍存在的,包括自驾车,虚拟助理,社交网络服务,医疗服务,面部识别等,但是深度神经网络在训练和推理期间需要大量计算资源。该机器学习界主要集中在模型级优化(如深度学习模型的架构压缩),而系统社区则专注于实施级别优化。在其间,在算术界中提出了各种算术级优化技术。本文在模型,算术和实施级技术方面提供了关于资源有效的深度学习技术的调查,并确定了三种不同级别技术的资源有效的深度学习技术的研究差距。我们的调查基于我们的资源效率度量定义,阐明了较低级别技术的影响,并探讨了资源有效的深度学习研究的未来趋势。
translated by 谷歌翻译
在物联网(IoT)支持的网络边缘(IOT)上的人工智能(AI)的最新进展已通过启用低延期性和计算效率来实现多种应用程序(例如智能农业,智能医院和智能工厂)的优势情报。但是,部署最先进的卷积神经网络(CNN),例如VGG-16和在资源约束的边缘设备上的重新连接,由于其大量参数和浮点操作(Flops),因此实际上是不可行的。因此,将网络修剪作为一种模型压缩的概念正在引起注意在低功率设备上加速CNN。结构化或非结构化的最先进的修剪方法都不认为卷积层表现出的复杂性的不同基本性质,并遵循训练放回训练的管道,从而导致其他计算开销。在这项工作中,我们通过利用CNN的固有层层级复杂性来提出一种新颖和计算高效的修剪管道。与典型的方法不同,我们提出的复杂性驱动算法根据其对整体网络复杂性的贡献选择了特定层用于滤波器。我们遵循一个直接训练修剪模型并避免计算复杂排名和微调步骤的过程。此外,我们定义了修剪的三种模式,即参数感知(PA),拖网(FA)和内存感知(MA),以引入CNN的多功能压缩。我们的结果表明,我们的方法在准确性和加速方面的竞争性能。最后,我们提出了不同资源和准确性之间的权衡取舍,这对于开发人员在资源受限的物联网环境中做出正确的决策可能会有所帮助。
translated by 谷歌翻译
鉴于其精确,效率和客观性,深入学习(DL)在重塑医疗保健系统方面具有很大的承诺。然而,DL模型到嘈杂和分发输入的脆性是在诊所的部署中的疾病。大多数系统产生点估计,无需进一步了解模型不确定性或信心。本文介绍了一个新的贝叶斯深度学习框架,用于分割神经网络中的不确定量化,特别是编码器解码器架构。所提出的框架使用一阶泰勒级近似传播,并学习模型参数分布的前两个矩(均值和协方差,通过最大化培训数据来最大限度地提高界限。输出包括两个地图:分段图像和分段的不确定性地图。细分决定中的不确定性被预测分配的协方差矩阵捕获。我们评估了从磁共振成像和计算机断层扫描的医学图像分割数据上提出的框架。我们在多个基准数据集上的实验表明,与最先进的分割模型相比,所提出的框架对噪声和对抗性攻击更加稳健。此外,所提出的框架的不确定性地图将低置信度(或等效高不确定性)与噪声,伪像或对抗攻击损坏的测试输入图像中的贴片。因此,当通过在不确定性地图中呈现更高的值,该模型可以自评测出现错误预测或错过分割结构的一部分,例如肿瘤。
translated by 谷歌翻译
We propose two efficient approximations to standard convolutional neural networks: Binary-Weight-Networks and XNOR-Networks. In Binary-Weight-Networks, the filters are approximated with binary values resulting in 32× memory saving. In XNOR-Networks, both the filters and the input to convolutional layers are binary. XNOR-Networks approximate convolutions using primarily binary operations. This results in 58× faster convolutional operations (in terms of number of the high precision operations) and 32× memory savings. XNOR-Nets offer the possibility of running state-of-the-art networks on CPUs (rather than GPUs) in real-time. Our binary networks are simple, accurate, efficient, and work on challenging visual tasks. We evaluate our approach on the ImageNet classification task. The classification accuracy with a Binary-Weight-Network version of AlexNet is the same as the full-precision AlexNet. We compare our method with recent network binarization methods, BinaryConnect and BinaryNets, and outperform these methods by large margins on ImageNet, more than 16% in top-1 accuracy. Our code is available at: http://allenai.org/plato/xnornet.
translated by 谷歌翻译
尽管基于卷积神经网络(CNN)的组织病理学图像的分类模型,但量化其不确定性是不可行的。此外,当数据偏置时,CNN可以遭受过度装备。我们展示贝叶斯-CNN可以通过自动规范并通过量化不确定性来克服这些限制。我们开发了一种新颖的技术,利用贝叶斯-CNN提供的不确定性,这显着提高了大部分测试数据的性能(约为77%的测试数据的准确性提高了约6%)。此外,我们通过非线性维度降低技术将数据投射到低尺寸空间来提供对不确定性的新颖解释。该维度降低能够通过可视化解释测试数据,并在低维特征空间中揭示数据的结构。我们表明,贝叶斯-CNN可以通过分别将假阴性和假阳性降低11%和7.7%的最先进的转移学习CNN(TL-CNN)来表现出远得更好。它具有仅为186万个参数的这种性能,而TL-CNN的参数仅为134.33亿。此外,我们通过引入随机自适应激活功能来修改贝叶斯-CNN。修改后的贝叶斯-CNN在所有性能指标上的贝叶斯-CNN略胜一筹,并显着降低了误报和误报的数量(两者减少了3%)。我们还表明,通过执行McNemar的统计显着性测试,这些结果具有统计学意义。这项工作显示了贝叶斯-CNN对现有技术的优势,解释并利用组织病理学图像的不确定性。它应该在各种医学图像分类中找到应用程序。
translated by 谷歌翻译
We introduce a method to train Quantized Neural Networks (QNNs) -neural networks with extremely low precision (e.g., 1-bit) weights and activations, at run-time. At traintime the quantized weights and activations are used for computing the parameter gradients. During the forward pass, QNNs drastically reduce memory size and accesses, and replace most arithmetic operations with bit-wise operations. As a result, power consumption is expected to be drastically reduced. We trained QNNs over the MNIST, CIFAR-10, SVHN and ImageNet datasets. The resulting QNNs achieve prediction accuracy comparable to their 32-bit counterparts. For example, our quantized version of AlexNet with 1-bit weights and 2-bit activations achieves 51% top-1 accuracy. Moreover, we quantize the parameter gradients to 6-bits as well which enables gradients computation using only bit-wise operation. Quantized recurrent neural networks were tested over the Penn Treebank dataset, and achieved comparable accuracy as their 32-bit counterparts using only 4-bits. Last but not least, we programmed a binary matrix multiplication GPU kernel with which it is possible to run our MNIST QNN 7 times faster than with an unoptimized GPU kernel, without suffering any loss in classification accuracy. The QNN code is available online.
translated by 谷歌翻译
We propose a simultaneous learning and pruning algorithm capable of identifying and eliminating irrelevant structures in a neural network during the early stages of training. Thus, the computational cost of subsequent training iterations, besides that of inference, is considerably reduced. Our method, based on variational inference principles using Gaussian scale mixture priors on neural network weights, learns the variational posterior distribution of Bernoulli random variables multiplying the units/filters similarly to adaptive dropout. Our algorithm, ensures that the Bernoulli parameters practically converge to either 0 or 1, establishing a deterministic final network. We analytically derive a novel hyper-prior distribution over the prior parameters that is crucial for their optimal selection and leads to consistent pruning levels and prediction accuracy regardless of weight initialization or the size of the starting network. We prove the convergence properties of our algorithm establishing theoretical and practical pruning conditions. We evaluate the proposed algorithm on the MNIST and CIFAR-10 data sets and the commonly used fully connected and convolutional LeNet and VGG16 architectures. The simulations show that our method achieves pruning levels on par with state-of the-art methods for structured pruning, while maintaining better test-accuracy and more importantly in a manner robust with respect to network initialization and initial size.
translated by 谷歌翻译
在这项工作中,我们使用变分推论来量化无线电星系分类的深度学习模型预测的不确定性程度。我们表明,当标记无线电星系时,个体测试样本的模型后差水平与人类不确定性相关。我们探讨了各种不同重量前沿的模型性能和不确定性校准,并表明稀疏事先产生更良好的校准不确定性估计。使用单个重量的后部分布,我们表明我们可以通过从最低信噪比(SNR)中除去权重来修剪30%的完全连接的层权重,而无需显着损失性能。我们证明,可以使用基于Fisher信息的排名来实现更大程度的修剪,但我们注意到两种修剪方法都会影响Failaroff-Riley I型和II型无线电星系的不确定性校准。最后,我们表明,与此领域的其他工作相比,我们经历了冷的后效,因此后部必须缩小后加权以实现良好的预测性能。我们检查是否调整成本函数以适应模型拼盘可以弥补此效果,但发现它不会产生显着差异。我们还研究了原则数据增强的效果,并发现这改善了基线,而且还没有弥补观察到的效果。我们将其解释为寒冷的后效,因为我们的培训样本过于有效的策划导致可能性拼盘,并将其提高到未来无线电银行分类的潜在问题。
translated by 谷歌翻译
混合精确的深神经网络达到了硬件部署所需的能源效率和吞吐量,尤其是在资源有限的情况下,而无需牺牲准确性。但是,不容易找到保留精度的最佳每层钻头精度,尤其是在创建巨大搜索空间的大量模型,数据集和量化技术中。为了解决这一困难,最近出现了一系列文献,并且已经提出了一些实现有希望的准确性结果的框架。在本文中,我们首先总结了文献中通常使用的量化技术。然后,我们对混合精液框架进行了彻底的调查,该调查是根据其优化技术进行分类的,例如增强学习和量化技术,例如确定性舍入。此外,讨论了每个框架的优势和缺点,我们在其中呈现并列。我们最终为未来的混合精液框架提供了指南。
translated by 谷歌翻译
We propose a new formulation for pruning convolutional kernels in neural networks to enable efficient inference. We interleave greedy criteria-based pruning with finetuning by backpropagation-a computationally efficient procedure that maintains good generalization in the pruned network. We propose a new criterion based on Taylor expansion that approximates the change in the cost function induced by pruning network parameters. We focus on transfer learning, where large pretrained networks are adapted to specialized tasks. The proposed criterion demonstrates superior performance compared to other criteria, e.g. the norm of kernel weights or feature map activation, for pruning large CNNs after adaptation to fine-grained classification tasks (Birds-200 and Flowers-102) relaying only on the first order gradient information. We also show that pruning can lead to more than 10× theoretical reduction in adapted 3D-convolutional filters with a small drop in accuracy in a recurrent gesture classifier. Finally, we show results for the largescale ImageNet dataset to emphasize the flexibility of our approach.
translated by 谷歌翻译
The deployment of deep convolutional neural networks (CNNs) in many real world applications is largely hindered by their high computational cost. In this paper, we propose a novel learning scheme for CNNs to simultaneously 1) reduce the model size; 2) decrease the run-time memory footprint; and 3) lower the number of computing operations, without compromising accuracy. This is achieved by enforcing channel-level sparsity in the network in a simple but effective way. Different from many existing approaches, the proposed method directly applies to modern CNN architectures, introduces minimum overhead to the training process, and requires no special software/hardware accelerators for the resulting models. We call our approach network slimming, which takes wide and large networks as input models, but during training insignificant channels are automatically identified and pruned afterwards, yielding thin and compact models with comparable accuracy. We empirically demonstrate the effectiveness of our approach with several state-of-the-art CNN models, including VGGNet, ResNet and DenseNet, on various image classification datasets. For VGGNet, a multi-pass version of network slimming gives a 20× reduction in model size and a 5× reduction in computing operations.
translated by 谷歌翻译
近年来,深度神经网络在各种应用领域中都有广泛的成功。但是,它们需要重要的计算和内存资源,严重阻碍其部署,特别是在移动设备上或实时应用程序。神经网络通常涉及大量参数,该参数对应于网络的权重。在培训过程中获得的这种参数是用于网络性能的决定因素。但是,它们也非常冗余。修剪方法尤其试图通过识别和移除不相关的重量来减小参数集的大小。在本文中,我们研究了培训策略对修剪效率的影响。考虑和比较了两种培训方式:(1)微调和(2)从头开始。在四个数据集(CIFAR10,CiFAR100,SVHN和CALTECH101)上获得的实验结果和两个不同的CNNS(VGG16和MOBILENET)证明已经在大语料库(例如想象成)上预先培训的网络,然后进行微调特定数据集可以更有效地修剪(高达80%的参数减少),而不是从头开始培训的相同网络。
translated by 谷歌翻译
Neural networks are both computationally intensive and memory intensive, making them difficult to deploy on embedded systems. Also, conventional networks fix the architecture before training starts; as a result, training cannot improve the architecture. To address these limitations, we describe a method to reduce the storage and computation required by neural networks by an order of magnitude without affecting their accuracy by learning only the important connections. Our method prunes redundant connections using a three-step method. First, we train the network to learn which connections are important. Next, we prune the unimportant connections. Finally, we retrain the network to fine tune the weights of the remaining connections. On the ImageNet dataset, our method reduced the number of parameters of AlexNet by a factor of 9×, from 61 million to 6.7 million, without incurring accuracy loss. Similar experiments with VGG-16 found that the total number of parameters can be reduced by 13×, from 138 million to 10.3 million, again with no loss of accuracy.
translated by 谷歌翻译
Neural networks are both computationally intensive and memory intensive, making them difficult to deploy on embedded systems. Also, conventional networks fix the architecture before training starts; as a result, training cannot improve the architecture. To address these limitations, we describe a method to reduce the storage and computation required by neural networks by an order of magnitude without affecting their accuracy by learning only the important connections. Our method prunes redundant connections using a three-step method. First, we train the network to learn which connections are important. Next, we prune the unimportant connections. Finally, we retrain the network to fine tune the weights of the remaining connections. On the ImageNet dataset, our method reduced the number of parameters of AlexNet by a factor of 9×, from 61 million to 6.7 million, without incurring accuracy loss. Similar experiments with VGG-16 found that the total number of parameters can be reduced by 13×, from 138 million to 10.3 million, again with no loss of accuracy.
translated by 谷歌翻译
机器学习的进步为低端互联网节点(例如微控制器)带来了新的机会,将情报带入了情报。传统的机器学习部署具有较高的记忆力,并计算足迹阻碍了其在超资源约束的微控制器上的直接部署。本文强调了为MicroController类设备启用机载机器学习的独特要求。研究人员为资源有限的应用程序使用专门的模型开发工作流程,以确保计算和延迟预算在设备限制之内,同时仍保持所需的性能。我们表征了微控制器类设备的机器学习模型开发的广泛适用的闭环工作流程,并表明几类应用程序采用了它的特定实例。我们通过展示多种用例,将定性和数值见解介绍到模型开发的不同阶段。最后,我们确定了开放的研究挑战和未解决的问题,要求仔细考虑前进。
translated by 谷歌翻译
这项工作提出了基于差异自动编码器卷积编码器产生的特征的概率分类器的内核选择方法。特别是,开发的方法允许选择最相关的潜在变量子集。在拟议的实现中,每个潜在变量都是从与最后一个编码器的卷积层的单个内核相关的分布中取样的,因为为每个内核创建了个体分布。因此,在采样的潜在变量上选择相关功能使得可以执行内核选择,从而过滤非信息性特征和内核。这样的导致模型参数数量减少。评估包装器和过滤器方法以进行特征选择。第二个特别相关,因为它仅基于内核的分布。通过测量所有分布之间的kullback-leibler差异来评估,假设其分布更相似的内核可以被丢弃。该假设得到了证实,因为观察到最相似的内核不会传达相关信息,并且可以去除。结果,所提出的方法适用于开发用于资源约束设备的应用程序。
translated by 谷歌翻译