建筑物分割是地球观测和空中图像分析领域的基本任务。最现有的基于深度学习的文献中的基于深度学习的算法可以应用于固定或窄的空间分辨率图像。在实践方案中,用户处理广泛的图像分辨率,因此,通常需要重新确定给定的空中图像以匹配用于训练深度学习模型的数据集的空间分辨率。然而,这将导致输出分割掩模的质量严重降级。要处理此问题,我们提出了这项研究,该研究是能够在不同空间分辨率下的空中图像中存在的建筑物的规模不变神经网络(SCI-NET)。具体而言,我们修改了U-Net架构并用密集的空间金字塔池(ASPP)融合,以提取细粒度的多尺度表示。我们将拟议模型对开放城市AI DataSet上的若干艺术模型的拟议模型进行了比较,并显示了SCI-Net在数据集中可用的所有分辨率方面提供稳定的改进余量。
translated by 谷歌翻译
在像素级别的特定类别分配地理空间对象是遥感图像分析中的基本任务。随着传感器技术的快速发展,可以在多个空间分辨率(MSR)中捕获远程感测图像,信息内容显示在不同的尺度上。从这些MSR图像中提取信息表示增强特征表示和表征的巨大机会。但是,MSR图像遭受了两个关键问题:1)地理对象的比例变化和2)在粗略空间分辨率下丢失详细信息。为了弥合这些差距,在本文中,我们提出了一种用于MSR远程感知图像的语义细分的新型刻度感知神经网络(SANET)。 SANET部署了密集连接的特征网络(DCFFM)模块,以捕获高质量的多尺度上下文,使得刻度变化正确地处理,并且对于大型和小物体而增加分割质量。空间特征重新校准(SFRM)模块进一步结合到网络中以学习具有增强的空间关系的完整语义内容,其中删除了信息丢失的负面影响。 DCFFM和SFRM的组合允许SANET学习尺度感知功能表示,这胜过现有的多尺度特征表示。三个语义分割数据集的广泛实验证明了拟议的Sanet在跨分辨率细分中的有效性。
translated by 谷歌翻译
Semantic segmentation of UAV aerial remote sensing images provides a more efficient and convenient surveying and mapping method for traditional surveying and mapping. In order to make the model lightweight and improve a certain accuracy, this research developed a new lightweight and efficient network for the extraction of ground features from UAV aerial remote sensing images, called LDMCNet. Meanwhile, this research develops a powerful lightweight backbone network for the proposed semantic segmentation model. It is called LDCNet, and it is hoped that it can become the backbone network of a new generation of lightweight semantic segmentation algorithms. The proposed model uses dual multi-scale context modules, namely the Atrous Space Pyramid Pooling module (ASPP) and the Object Context Representation module (OCR). In addition, this research constructs a private dataset for semantic segmentation of aerial remote sensing images from drones. This data set contains 2431 training sets, 945 validation sets, and 475 test sets. The proposed model performs well on this dataset, with only 1.4M parameters and 5.48G floating-point operations (FLOPs), achieving an average intersection-over-union ratio (mIoU) of 71.12%. 7.88% higher than the baseline model. In order to verify the effectiveness of the proposed model, training on the public datasets "LoveDA" and "CITY-OSM" also achieved excellent results, achieving mIoU of 65.27% and 74.39%, respectively.
translated by 谷歌翻译
土地覆盖分类是一项多级分割任务,将每个像素分类为地球表面的某些天然或人为类别,例如水,土壤,自然植被,农作物和人类基础设施。受硬件计算资源和内存能力的限制,大多数现有研究通过将它们放置或将其裁剪成小于512*512像素的小斑块来预处理原始遥感图像,然后再将它们发送到深神经网络。然而,下调图像会导致空间细节损失,使小细分市场难以区分,并逆转了数十年来努力获得的空间分辨率进度。将图像裁剪成小斑块会导致远程上下文信息的丢失,并将预测的结果恢复为原始大小会带来额外的延迟。为了响应上述弱点,我们提出了称为Mkanet的有效的轻巧的语义分割网络。 Mkanet针对顶视图高分辨率遥感图像的特征,利用共享内核同时且同样处理不一致的尺度的地面段,还采用平行且浅层的体系结构来提高推理速度和友好的支持速度和友好的支持图像贴片,超过10倍。为了增强边界和小段歧视,我们还提出了一种捕获类别杂质区域的方法,利用边界信息并对边界和小部分错误判断施加额外的惩罚。广泛实验的视觉解释和定量指标都表明,Mkanet在两个土地覆盖分类数据集上获得了最先进的准确性,并且比其他竞争性轻量级网络快2倍。所有这些优点突出了Mkanet在实际应用中的潜力。
translated by 谷歌翻译
利用相对高的像素 - 明智的度量分数,正在实现使用相对卷积神经网络的编码器解码器中存在的卫星图像中存在的建筑物的语义分割。在本文中,我们的目标是利用实例分段任务的完全卷积神经网络的力量,并使用额外添加的类与流域处理技术一起利用更好的对象度量结果来利用。我们还显示Cutmix混合数据增强和单周期学习率政策是更大的正则化方法,以实现更好的培训数据和提高性能。此外,混合精度训练提供了更灵活的来试验更大的网络和批次,同时保持训练期间的稳定性和收敛性。我们比较并显示在我们整个管道中的这些额外变化的效果,最终提供了一个已被证明更好地执行的调谐超参数。
translated by 谷歌翻译
尽管近期基于深度学习的语义细分,但远程感测图像的自动建筑检测仍然是一个具有挑战性的问题,由于全球建筑物的出现巨大变化。误差主要发生在构建足迹的边界,阴影区域,以及检测外表面具有与周围区域非常相似的反射率特性的建筑物。为了克服这些问题,我们提出了一种生成的对抗基于网络的基于网络的分割框架,其具有嵌入在发电机中的不确定性关注单元和改进模块。由边缘和反向关注单元组成的细化模块,旨在精炼预测的建筑地图。边缘注意力增强了边界特征,以估计更高的精度,并且反向关注允许网络探索先前估计区域中缺少的功能。不确定性关注单元有助于网络解决分类中的不确定性。作为我们方法的权力的衡量标准,截至2021年12月4日,它在Deepglobe公共领导板上的第二名,尽管我们的方法的主要重点 - 建筑边缘 - 并不完全对齐用于排行榜排名的指标。 DeepGlobe充满挑战数据集的整体F1分数为0.745。我们还报告了对挑战的Inria验证数据集的最佳成绩,我们的网络实现了81.28%的总体验证,总体准确性为97.03%。沿着同一条线,对于官方Inria测试数据集,我们的网络总体上得分77.86%和96.41%,而且准确性。
translated by 谷歌翻译
$ $With recent advances in CNNs, exceptional improvements have been made in semantic segmentation of high resolution images in terms of accuracy and latency. However, challenges still remain in detecting objects in crowded scenes, large scale variations, partial occlusion, and distortions, while still maintaining mobility and latency. We introduce a fast and efficient convolutional neural network, ASBU-Net, for semantic segmentation of high resolution images that addresses these problems and uses no novelty layers for ease of quantization and embedded hardware support. ASBU-Net is based on a new feature extraction module, atrous space bender layer (ASBL), which is efficient in terms of computation and memory. The ASB layers form a building block that is used to make ASBNet. Since this network does not use any special layers it can be easily implemented, quantized and deployed on FPGAs and other hardware with limited memory. We present experiments on resource and accuracy trade-offs and show strong performance compared to other popular models.
translated by 谷歌翻译
白内障手术中的语义分割具有广泛的应用,可导致外科结果增强和降低临床风险。但是,在这些手术中分割不同相关结构的不同问题使得指定独特的网络非常具有挑战性。本文提出了一个语义分割网络,称为Deeppyramid,可以使用三个新颖性来应对这些挑战:(1)金字塔视图融合模块,该模块可在输入卷积中每个像素位置的周围区域中提供不同的角度的全球视图功能图; (2)一个可变形的金字塔接收模块,该模块可实现一个可适应感兴趣对象的几何变换的广泛可变形接收场; (3)专用的金字塔损失,可自适应监督多尺度语义特征图。结合在一起,我们表明这些模块可以有效地提高语义分割性能,尤其是在对象中透明度,可变形性,可伸缩性和钝边缘的情况下。我们证明我们的方法在最先进的级别上执行,并且优于许多现有方法,其利润率很高(与最佳竞争对手的方法相比,联合的交叉路口总体改善为3.66%)。
translated by 谷歌翻译
机载激光扫描(ALS)点云的分类是遥感和摄影测量场的关键任务。尽管最近基于深度学习的方法取得了令人满意的表现,但他们忽略了接受场的统一性,这使得ALS点云分类对于区分具有复杂结构和极端规模变化的区域仍然具有挑战性。在本文中,为了配置多受感受性的场特征,我们提出了一个新型的接受场融合和分层网络(RFFS-NET)。以新颖的扩张图卷积(DGCONV)及其扩展环形扩张卷积(ADCONV)作为基本的构建块,使用扩张和环形图融合(Dagfusion)模块实现了接受场融合过程,该模块获得了多受感染的场特征代表通过捕获带有各种接收区域的扩张和环形图。随着计算碱基的计算基础,使用嵌套在RFFS-NET中的多级解码器进行的接收场的分层,并由多层接受场聚集损失(MRFALOSS)驱动,以驱动网络驱动网络以学习在具有不同分辨率的监督标签的方向。通过接受场融合和分层,RFFS-NET更适应大型ALS点云中具有复杂结构和极端尺度变化区域的分类。在ISPRS Vaihingen 3D数据集上进行了评估,我们的RFFS-NET显着优于MF1的基线方法5.3%,而MIOU的基线方法的总体准确性为82.1%,MF1的总准确度为71.6%,MIOU的MF1和MIOU为58.2%。此外,LASDU数据集和2019 IEEE-GRSS数据融合竞赛数据集的实验显示,RFFS-NET可以实现新的最新分类性能。
translated by 谷歌翻译
卷积神经网络(CNN)的深度学习体系结构在计算机视野领域取得了杰出的成功。 CNN构建的编码器架构U-Net在生物医学图像分割方面取得了重大突破,并且已在各种实用的情况下应用。但是,编码器部分中每个下采样层和简单堆积的卷积的平等设计不允许U-NET从不同深度提取足够的特征信息。医学图像的复杂性日益增加为现有方法带来了新的挑战。在本文中,我们提出了一个更深层,更紧凑的分裂注意U形网络(DCSAU-NET),该网络有效地利用了基于两个新颖框架的低级和高级语义信息:主要功能保护和紧凑的分裂注意力堵塞。我们评估了CVC-ClinicDB,2018 Data Science Bowl,ISIC-2018和SEGPC-2021数据集的建议模型。结果,DCSAU-NET在联合(MIOU)和F1-SOCRE的平均交点方面显示出比其他最先进的方法(SOTA)方法更好的性能。更重要的是,提出的模型在具有挑战性的图像上表现出了出色的细分性能。我们的工作代码以及更多技术细节,请访问https://github.com/xq141839/dcsau-net。
translated by 谷歌翻译
使用遥感图像进行建筑检测和变更检测可以帮助城市和救援计划。此外,它们可用于自然灾害后的建筑损害评估。当前,大多数用于建筑物检测的现有模型仅使用一个图像(预拆架图像)来检测建筑物。这是基于这样的想法:由于存在被破坏的建筑物,后沙仪图像降低了模型的性能。在本文中,我们提出了一种称为暹罗形式的暹罗模型,该模型使用前和垃圾后图像作为输入。我们的模型有两个编码器,并具有分层变压器体系结构。两个编码器中每个阶段的输出都以特征融合的方式给予特征融合,以从disasaster图像生成查询,并且(键,值)是从disasaster图像中生成的。为此,在特征融合中也考虑了时间特征。在特征融合中使用颞变压器的另一个优点是,与CNN相比,它们可以更好地维持由变压器编码器产生的大型接受场。最后,在每个阶段,将颞变压器的输出输入简单的MLP解码器。在XBD和WHU数据集上评估了暹罗形式模型,用于构建检测以及Levir-CD和CDD数据集,以进行更改检测,并可以胜过最新的。
translated by 谷歌翻译
Semantic segmentation works on the computer vision algorithm for assigning each pixel of an image into a class. The task of semantic segmentation should be performed with both accuracy and efficiency. Most of the existing deep FCNs yield to heavy computations and these networks are very power hungry, unsuitable for real-time applications on portable devices. This project analyzes current semantic segmentation models to explore the feasibility of applying these models for emergency response during catastrophic events. We compare the performance of real-time semantic segmentation models with non-real-time counterparts constrained by aerial images under oppositional settings. Furthermore, we train several models on the Flood-Net dataset, containing UAV images captured after Hurricane Harvey, and benchmark their execution on special classes such as flooded buildings vs. non-flooded buildings or flooded roads vs. non-flooded roads. In this project, we developed a real-time UNet based model and deployed that network on Jetson AGX Xavier module.
translated by 谷歌翻译
Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.
translated by 谷歌翻译
本文介绍了Dahitra,这是一种具有分层变压器的新型深度学习模型,可在飓风后根据卫星图像对建筑物的损害进行分类。自动化的建筑损害评估为决策和资源分配提供了关键信息,以快速应急响应。卫星图像提供了实时,高覆盖的信息,并提供了向大规模污点后建筑物损失评估提供信息的机会。此外,深入学习方法已证明在对建筑物的损害进行分类方面有希望。在这项工作中,提出了一个基于变压器的新型网络来评估建筑物的损失。该网络利用多个分辨率的层次空间特征,并在将变压器编码器应用于空间特征后捕获特征域的时间差异。当对大规模灾难损坏数据集(XBD)进行测试以构建本地化和损坏分类以及在Levir-CD数据集上进行更改检测任务时,该网络将实现最先进的绩效。此外,我们引入了一个新的高分辨率卫星图像数据集,IDA-BD(与2021年路易斯安那州的2021年飓风IDA有关,以便域名适应以进一步评估该模型的能力,以适用于新损坏的区域。域的适应结果表明,所提出的模型可以适应一个新事件,只有有限的微调。因此,所提出的模型通过更好的性能和域的适应来推进艺术的当前状态。此外,IDA-BD也提供了A高分辨率注释的数据集用于该领域的未来研究。
translated by 谷歌翻译
医疗图像分割有助于计算机辅助诊断,手术和治疗。数字化组织载玻片图像用于分析和分段腺,核和其他生物标志物,这些标志物进一步用于计算机辅助医疗应用中。为此,许多研究人员开发了不同的神经网络来对组织学图像进行分割,主要是这些网络基于编码器编码器体系结构,并且还利用了复杂的注意力模块或变压器。但是,这些网络不太准确地捕获相关的本地和全局特征,并在多个尺度下具有准确的边界检测,因此,我们提出了一个编码器折叠网络,快速注意模块和多损耗函数(二进制交叉熵(BCE)损失的组合) ,焦点损失和骰子损失)。我们在两个公开可用数据集上评估了我们提出的网络的概括能力,用于医疗图像分割Monuseg和Glas,并胜过最先进的网络,在Monuseg数据集上提高了1.99%的提高,而GLAS数据集则提高了7.15%。实施代码可在此链接上获得:https://bit.ly/histoseg
translated by 谷歌翻译
语义分割是将类标签分配给图像中每个像素的问题,并且是自动车辆视觉堆栈的重要组成部分,可促进场景的理解和对象检测。但是,许多表现最高的语义分割模型非常复杂且笨拙,因此不适合在计算资源有限且低延迟操作的板载自动驾驶汽车平台上部署。在这项调查中,我们彻底研究了旨在通过更紧凑,更有效的模型来解决这种未对准的作品,该模型能够在低内存嵌入式系统上部署,同时满足实时推理的限制。我们讨论了该领域中最杰出的作品,根据其主要贡献将它们置于分类法中,最后我们评估了在一致的硬件和软件设置下,所讨论模型的推理速度,这些模型代表了具有高端的典型研究环境GPU和使用低内存嵌入式GPU硬件的现实部署方案。我们的实验结果表明,许多作品能够在资源受限的硬件上实时性能,同时说明延迟和准确性之间的一致权衡。
translated by 谷歌翻译
更改检测的目的(CD)是通过比较在不同时间拍摄的两张图像来检测变化。 CD的挑战性部分是跟踪用户想要突出显示的变化,例如新建筑物,并忽略了由于外部因素(例如环境,照明条件,雾或季节性变化)而引起的变化。深度学习领域的最新发展使研究人员能够在这一领域取得出色的表现。特别是,时空注意的不同机制允许利用从模型中提取的空间特征,并通过利用这两个可用图像来以时间方式将它们相关联。不利的一面是,这些模型已经变得越来越复杂且大,对于边缘应用来说通常是不可行的。当必须将模型应用于工业领域或需要实时性能的应用程序时,这些都是限制。在这项工作中,我们提出了一个名为TinyCD的新型模型,证明既轻量级又有效,能够实现较少参数13-150x的最新技术状态。在我们的方法中,我们利用了低级功能比较图像的重要性。为此,我们仅使用几个骨干块。此策略使我们能够保持网络参数的数量较低。为了构成从这两个图像中提取的特征,我们在参数方面引入了一种新颖的经济性,混合块能够在时空和时域中交叉相关的特征。最后,为了充分利用计算功能中包含的信息,我们定义了能够执行像素明智分类的PW-MLP块。源代码,模型和结果可在此处找到:https://github.com/andreacodegoni/tiny_model_4_cd
translated by 谷歌翻译
现代的高性能语义分割方法采用沉重的主链和扩张的卷积来提取相关特征。尽管使用上下文和语义信息提取功能对于分割任务至关重要,但它为实时应用程序带来了内存足迹和高计算成本。本文提出了一种新模型,以实现实时道路场景语义细分的准确性/速度之间的权衡。具体来说,我们提出了一个名为“比例吸引的条带引导特征金字塔网络”(s \ textsuperscript {2} -fpn)的轻巧模型。我们的网络由三个主要模块组成:注意金字塔融合(APF)模块,比例吸引条带注意模块(SSAM)和全局特征Upsample(GFU)模块。 APF采用了注意力机制来学习判别性多尺度特征,并有助于缩小不同级别之间的语义差距。 APF使用量表感知的关注来用垂直剥离操作编码全局上下文,并建模长期依赖性,这有助于将像素与类似的语义标签相关联。此外,APF还采用频道重新加权块(CRB)来强调频道功能。最后,S \ TextSuperScript {2} -fpn的解码器然后采用GFU,该GFU用于融合APF和编码器的功能。已经对两个具有挑战性的语义分割基准进行了广泛的实验,这表明我们的方法通过不同的模型设置实现了更好的准确性/速度权衡。提出的模型已在CityScapes Dataset上实现了76.2 \%miou/87.3fps,77.4 \%miou/67fps和77.8 \%miou/30.5fps,以及69.6 \%miou,71.0 miou,71.0 \%miou,和74.2 \%\%\%\%\%\%。 miou在Camvid数据集上。这项工作的代码将在\ url {https://github.com/mohamedac29/s2-fpn提供。
translated by 谷歌翻译
Semantic image segmentation is a basic street scene understanding task in autonomous driving, where each pixel in a high resolution image is categorized into a set of semantic labels. Unlike other scenarios, objects in autonomous driving scene exhibit very large scale changes, which poses great challenges for high-level feature representation in a sense that multi-scale information must be correctly encoded. To remedy this problem, atrous convolution [14] was introduced to generate features with larger receptive fields without sacrificing spatial resolution. Built upon atrous convolution, Atrous Spatial Pyramid Pooling (ASPP) [2] was proposed to concatenate multiple atrous-convolved features using different dilation rates into a final feature representation. Although ASPP is able to generate multi-scale features, we argue the feature resolution in the scale-axis is not dense enough for the autonomous driving scenario. To this end, we propose Densely connected Atrous Spatial Pyramid Pooling (DenseASPP), which connects a set of atrous convolutional layers in a dense way, such that it generates multi-scale features that not only cover a larger scale range, but also cover that scale range densely, without significantly increasing the model size. We evaluate DenseASPP on the street scene benchmark Cityscapes [4] and achieve state-of-the-art performance.
translated by 谷歌翻译
语义细分需要在处理大量数据时学习高级特征的方法。卷积神经网络(CNN)可以学习独特和适应性的特征,以实现这一目标。但是,由于遥感图像的大尺寸和高空间分辨率,这些网络无法有效地分析整个场景。最近,Deep Transformers证明了它们能够记录图像中不同对象之间的全局相互作用的能力。在本文中,我们提出了一个新的分割模型,该模型将卷积神经网络与变压器结合在一起,并表明这种局部和全局特征提取技术的混合物在遥感分割中提供了显着优势。此外,提出的模型包括两个融合层,这些融合层旨在有效地表示网络的多模式输入和输出。输入融合层提取物具有总结图像内容与高程图(DSM)之间关系的地图。输出融合层使用一种新型的多任务分割策略,其中使用特定于类的特征提取层和损耗函数来识别类标签。最后,使用快速制定的方法将所有不明的类标签转换为其最接近的邻居。我们的结果表明,与最新技术相比,提出的方法可以提高分割精度。
translated by 谷歌翻译