高斯混合模型将其作为一个强大的工具,主要是在聚类问题中,但在特征提取,模式识别,图像分割和一般机器学习中也具有适当的准备。当面对模式匹配的问题时,在不同数据上计算的不同混合模型可以维持关于数据集的结构的重要信息。为了测量或比较混合模型的结果,Wassersein距离可以非常有用,但是计算混合分布并不容易。在本文中,我们从高斯混合模型之间的Wasserstein距离获得了一个可能的近似,并将其降低到线性问题。此外,显示了关于真实世界数据的应用示例。
translated by 谷歌翻译
信息技术的进步导致了非常大的数据集,通常保存在不同的存储中心。必须适于现有的统计方法来克服所产生的计算障碍,同时保持统计有效性和效率。分裂和征服方法已应用于许多领域,包括分位式流程,回归分析,主偶数和指数家庭。我们研究了有限高斯混合的分布式学习的分裂和征服方法。我们建议减少策略并开发一种有效的MM算法。新估计器显示在某些一般条件下保持一致并保留根 - N一致性。基于模拟和现实世界数据的实验表明,如果后者是可行的,所提出的分离和征管方法具有基于完整数据集的全球估计的统计性能。如果模型假设与真实数据不匹配,甚至可以略高于全局估算器。它还具有比某些现有方法更好的统计和计算性能。
translated by 谷歌翻译
比较概率分布是许多机器学习算法的关键。最大平均差异(MMD)和最佳运输距离(OT)是在过去几年吸引丰富的关注的概率措施之间的两类距离。本文建立了一些条件,可以通过MMD规范控制Wassersein距离。我们的作品受到压缩统计学习(CSL)理论的推动,资源有效的大规模学习的一般框架,其中训练数据总结在单个向量(称为草图)中,该训练数据捕获与所考虑的学习任务相关的信息。在CSL中的现有结果启发,我们介绍了H \“较旧的较低限制的等距属性(H \”较旧的LRIP)并表明这家属性具有有趣的保证对压缩统计学习。基于MMD与Wassersein距离之间的关系,我们通过引入和研究学习任务的Wassersein可读性的概念来提供压缩统计学习的保证,即概率分布之间的某些特定于特定的特定度量,可以由Wassersein界定距离。
translated by 谷歌翻译
分发比较在许多机器学习任务中起着核心作用,例如数据分类和生成建模。在这项研究中,我们提出了一种称为希尔伯特曲线投影(HCP)距离的新型度量,以测量具有高鲁棒性和低复杂性的两个概率分布之间的距离。特别是,我们首先使用希尔伯特曲线投射两个高维概率密度,以获得它们之间的耦合,然后根据耦合在原始空间中这两个密度之间的传输距离进行计算。我们表明,HCP距离是一个适当的度量标准,对于绝对连续的概率度量,定义明确。此外,我们证明,经验HCP距离在规律性条件下以不超过$ O(n^{ - 1/2d})$的速度收敛到其人口。为了抑制差异性的诅咒,我们还使用(可学习的)子空间投影开发了HCP距离的两个变体。合成数据和现实世界数据的实验表明,我们的HCP距离是瓦斯汀距离的有效替代,其复杂性低并克服了切成薄片的瓦斯坦距离的缺点。
translated by 谷歌翻译
本文研究了主题模型中高维,离散,可能稀疏的混合模型的估计。数据包括在$ n $独立文档中观察到的$ p $单词的多项式计数。在主题模型中,$ p \ times n $预期的单词频率矩阵被认为被分解为$ p \ times k $ word-top-topic矩阵$ a $ a $和a $ k \ times n $ topic-document $ t $ t $ 。由于两个矩阵的列代表属于概率简单的条件概率,因此$ a $的列被视为$ p $ - 二维混合组件,这些混合组件是所有文档共有的,而$ t $的列被视为$ k $二维的混合物特定文档并允许稀疏的权重。主要的兴趣是提供鲜明的,有限的样本,$ \ ell_1 $ norm收敛速率,用于混合物重量$ t $的估计量,当$ a $是已知或未知时。对于已知的$ a $,我们建议MLE估计为$ t $。我们对MLE的非标准分析不仅建立了其$ \ ell_1 $收敛率,而且揭示了一个非凡的属性:MLE,没有额外的正则化,可能完全稀疏,并且包含$ t $的真实零模式。我们进一步表明,MLE既是最佳的最佳选择,又适应了一大批稀疏主题分布中未知的稀疏性。当$ a $未知时,我们通过优化与$ a $ a $的插件的可能性功能来估计$ t $。对于任何满足与$ a $ $ a $的详细条件的估计器$ \ hat {a} $,显示出$ t $的估计器可保留为MLE建立的属性。环境尺寸$ k $和$ p $可以随着样本量而增长。我们的应用是对文档生成分布之间1-Wasserstein距离的估计。我们建议,估计和分析两个概率文档表示之间的新1-Wasserstein距离。
translated by 谷歌翻译
我们考虑人口Wasserstein Barycenter问题,用于随机概率措施支持有限一组点,由在线数据流生成。这导致了复杂的随机优化问题,其中目标是作为作为随机优化问题的解决方案给出的函数的期望。我们采用了问题的结构,并获得了这个问题的凸凹陷的随机鞍点重构。在设置随机概率措施的分布是离散的情况下,我们提出了一种随机优化算法并估计其复杂性。基于内核方法的第二个结果将前一个延伸到随机概率措施的任意分布。此外,这种新算法在许多情况下,与随机近似方法相结合的随机近似方法,具有优于随机近似方法的总复杂性。我们还通过一系列数值实验说明了我们的发展。
translated by 谷歌翻译
通过最小化kullback-leibler(kl)差异,变化推断近似于非差异分布。尽管这种差异对于计算有效,并且已在应用中广泛使用,但它具有一些不合理的属性。例如,它不是一个适当的度量标准,即,它是非对称的,也不保留三角形不等式。另一方面,最近的最佳运输距离显示出比KL差异的一些优势。在这些优势的帮助下,我们通过最大程度地减少切片的瓦斯汀距离,这是一种由最佳运输产生的有效度量,提出了一种新的变异推理方法。仅通过运行MCMC而不能解决任何优化问题,就可以简单地近似切片的Wasserstein距离。我们的近似值也不需要变异分布的易于处理密度函数,因此诸如神经网络之类的发电机可以摊销近似家庭。此外,我们提供了方法的理论特性分析。说明了关于合成和真实数据的实验,以显示提出的方法的性能。
translated by 谷歌翻译
与CNN的分类,分割或对象检测相比,生成网络的目标和方法根本不同。最初,它们不是作为图像分析工具,而是生成自然看起来的图像。已经提出了对抗性训练范式来稳定生成方法,并已被证明是非常成功的 - 尽管绝不是第一次尝试。本章对生成对抗网络(GAN)的动机进行了基本介绍,并通​​过抽象基本任务和工作机制并得出了早期实用方法的困难来追溯其成功的道路。将显示进行更稳定的训练方法,也将显示出不良收敛及其原因的典型迹象。尽管本章侧重于用于图像生成和图像分析的gan,但对抗性训练范式本身并非特定于图像,并且在图像分析中也概括了任务。在将GAN与最近进入场景的进一步生成建模方法进行对比之前,将闻名图像语义分割和异常检测的架构示例。这将允许对限制的上下文化观点,但也可以对gans有好处。
translated by 谷歌翻译
期望 - 最大化(EM)算法是一种简单的元叠加,当观察到的数据中缺少测量值或数据由可观察到的数据组成时,它已多年来用作统计推断的方法。它的一般属性进行了充分的研究,而且还有无数方法将其应用于个人问题。在本文中,我们介绍了$ em $ $ and算法,EM算法的信息几何公式及其扩展和应用程序以及各种问题。具体而言,我们将看到,可以制定一个异常稳定推理算法,用于计算通道容量的算法,概率单纯性的参数估计方法,特定的多变量分析方法,例如概率模型中的主要组件分析和模态回归中的主成分分析,基质分解和学习生成模型,这些模型最近从几何学角度引起了深度学习的关注。
translated by 谷歌翻译
学习条件密度和识别影响整个分布的因素是数据驱动应用程序中的重要任务。常规方法主要与摘要统计数据合作,因此不足以进行全面的调查。最近,关于功能回归方法的发展,将密度曲线作为功能结果建模。开发此类模型的一个主要挑战在于非阴性的固有约束和密度结果功能空间的单位积分。为了克服这个基本问题,我们建议Wasserstein分销学习(WDL),这是一个柔性在尺度回归建模框架,始于Wasserstein距离$ W_2 $,作为密度结果空间的适当指标。然后,我们将半参数条件高斯混合模型(SCGMM)作为模型类$ \ mathfrak {f} \ otimes \ Mathcal {t} $作为模型类$ \ mathfrak {scgmm)介绍。生成的度量空间$(\ Mathfrak {f} \ otimes \ Mathcal {t},W_2)$满足所需的约束,并提供密集且封闭的功能子空间。为了拟合所提出的模型,我们基于增强树的大量最小化优化进一步开发了有效的算法。与以前的文献中的方法相比,WDL更好地表征了条件密度的非线性依赖性及其得出的摘要统计。我们通过模拟和现实世界应用来证明WDL框架的有效性。
translated by 谷歌翻译
We introduce and study a novel model-selection strategy for Bayesian learning, based on optimal transport, along with its associated predictive posterior law: the Wasserstein population barycenter of the posterior law over models. We first show how this estimator, termed Bayesian Wasserstein barycenter (BWB), arises naturally in a general, parameter-free Bayesian model-selection framework, when the considered Bayesian risk is the Wasserstein distance. Examples are given, illustrating how the BWB extends some classic parametric and non-parametric selection strategies. Furthermore, we also provide explicit conditions granting the existence and statistical consistency of the BWB, and discuss some of its general and specific properties, providing insights into its advantages compared to usual choices, such as the model average estimator. Finally, we illustrate how this estimator can be computed using the stochastic gradient descent (SGD) algorithm in Wasserstein space introduced in a companion paper arXiv:2201.04232v2 [math.OC], and provide a numerical example for experimental validation of the proposed method.
translated by 谷歌翻译
Wasserstein barycenter, built on the theory of optimal transport, provides a powerful framework to aggregate probability distributions, and it has increasingly attracted great attention within the machine learning community. However, it suffers from severe computational burden, especially for high dimensional and continuous settings. To this end, we develop a novel continuous approximation method for the Wasserstein barycenters problem given sample access to the input distributions. The basic idea is to introduce a variational distribution as the approximation of the true continuous barycenter, so as to frame the barycenters computation problem as an optimization problem, where parameters of the variational distribution adjust the proxy distribution to be similar to the barycenter. Leveraging the variational distribution, we construct a tractable dual formulation for the regularized Wasserstein barycenter problem with c-cyclical monotonicity, which can be efficiently solved by stochastic optimization. We provide theoretical analysis on convergence and demonstrate the practical effectiveness of our method on real applications of subset posterior aggregation and synthetic data.
translated by 谷歌翻译
标准化流动,扩散归一化流量和变形自动置换器是强大的生成模型。在本文中,我们提供了一个统一的框架来通过马尔可夫链处理这些方法。实际上,我们考虑随机标准化流量作为一对马尔可夫链,满足一些属性,并表明许多用于数据生成的最先进模型适合该框架。马尔可夫链的观点使我们能够将确定性层作为可逆的神经网络和随机层作为大都会加速层,Langevin层和变形自身偏移,以数学上的声音方式。除了具有Langevin层的密度的层,扩散层或变形自身形式,也可以处理与确定性层或大都会加热器层没有密度的层。因此,我们的框架建立了一个有用的数学工具来结合各种方法。
translated by 谷歌翻译
Gaussian Process regression is a kernel method successfully adopted in many real-life applications. Recently, there is a growing interest on extending this method to non-Euclidean input spaces, like the one considered in this paper, consisting of probability measures. Although a Positive Definite kernel can be defined by using a suitable distance -- the Wasserstein distance -- the common procedure for learning the Gaussian Process model can fail due to numerical issues, arising earlier and more frequently than in the case of an Euclidean input space and, as demonstrated in this paper, that cannot be avoided by adding artificial noise (nugget effect) as usually done. This paper uncovers the main reason of these issues, that is a non-stationarity relationship between the Wasserstein-based squared exponential kernel and its Euclidean-based counterpart. As a relevant result, the Gaussian Process model is learned by assuming the input space as Euclidean and then an algebraic transformation, based on the uncovered relation, is used to transform it into a non-stationary and Wasserstein-based Gaussian Process model over probability measures. This algebraic transformation is simpler than log-exp maps used in the case of data belonging to Riemannian manifolds and recently extended to consider the pseudo-Riemannian structure of an input space equipped with the Wasserstein distance.
translated by 谷歌翻译
高斯混合还原(GMR)是通过较低订单近似高阶高斯混合物的问题。它广泛用于隐藏马尔可夫模型中的密度估计,递归跟踪和信念传播。在这项工作中,我们表明GMR可以作为优化问题,最小化两个混合物之间的复合输送分流(CTD)。优化问题可以通过易于实现的大多数 - 最小化(MM)算法来解决。我们表明MM算法在一般条件下收敛。 GMR的一种流行的计算有效方法是基于聚类的迭代算法。然而,这些算法缺乏理论保证它们是否在他们何时收敛或获得一些最佳目标。我们表明,现有的基于聚类的算法是我们MM算法的特殊情况,因此可以建立其理论属性。我们进一步示出了通过在CTD中选择各种成本函数,可以进一步提高基于聚类的算法的性能。进行数值实验以说明我们所提出的延伸的有效性。
translated by 谷歌翻译
Wasserstein-Fisher-Rao(WFR)距离是一个指标家族,用于评估两种ra措施的差异,这同时考虑了运输和重量的变化。球形WFR距离是WFR距离的投影版本,以实现概率措施,因此配备了WFR的ra尺度空间可以在概率测量的空间中,用球形WFR视为公式锥。与Wasserstein距离相比,在球形WFR下对大地测量学的理解尚不清楚,并且仍然是持续的研究重点。在本文中,我们开发了一个深度学习框架,以计算球形WFR指标下的大地测量学,并且可以采用学习的大地测量学来生成加权样品。我们的方法基于球形WFR的Benamou-Brenier型动态配方。为了克服重量变化带来的边界约束的困难,将基于反向映射的kullback-leibler(KL)发散术语引入成本函数。此外,引入了使用粒子速度的新的正则化项,以替代汉密尔顿 - 雅各比方程的动态公式中的潜力。当用于样品生成时,与先前的流量模型相比,与给定加权样品的应用相比,我们的框架可能对具有给定加权样品的应用有益。
translated by 谷歌翻译
科学数据集通常具有层次结构:例如,在调查中,个人参与者(样本)可能会分为更高级别(单位),例如其地理区域。在这些设置中,兴趣通常是在探索单位级别而不是样本级别上的结构。可以根据其平均值之间的距离进行比较,但是这忽略了样本的单位内分布。在这里,我们使用Wasserstein距离度量标准开发了一种对层次数据集进行探索性分析的方法,该指标考虑了单位内分布的形状。我们使用T-SNE构建单元的2D嵌入,基于它们之间的成对瓦斯汀距离的矩阵。距离矩阵可以通过使用高斯分布近似于每个单元来有效计算,但是我们还提供了一种可扩展的方法来计算精确的Wasserstein距离。我们使用合成数据来证明我们的Wasserstein T-SNE的有效性,并将其应用于2017年德国议会选举的数据,将投票站视为样本和投票区。结果嵌入发现数据中有意义的结构。
translated by 谷歌翻译
聚类是基于它们的相似性对组对象的重要探索性数据分析技术。广泛使用的$ k $ -MEANS聚类方法依赖于一些距离的概念将数据划分为较少数量的组。在欧几里得空间中,$ k $ -Means的基于质心和基于距离的公式相同。在现代机器学习应用中,数据通常是作为概率分布而出现的,并且可以使用最佳运输指标来处理测量值数据。由于瓦斯坦斯坦空间的非负亚历山德罗夫曲率,巴里中心遭受了规律性和非舒适性问题。 Wasserstein Barycenters的特殊行为可能使基于质心的配方无法代表集群内的数据点,而基于距离的$ K $ -MEANS方法及其半决赛计划(SDP)可以恢复真实的方法集群标签。在聚集高斯分布的特殊情况下,我们表明SDP放松的Wasserstein $ k $ - 金钱可以实现精确的恢复,因为这些集群按照$ 2 $ - WASSERSTEIN MERTRIC进行了良好的分离。我们的仿真和真实数据示例还表明,基于距离的$ K $ -Means可以比基于标准的基于质心的$ k $ -Means获得更好的分类性能,用于聚类概率分布和图像。
translated by 谷歌翻译
我们介绍了一类小说的预计方法,对实际线上的概率分布数据集进行统计分析,具有2-Wassersein指标。我们特别关注主成分分析(PCA)和回归。为了定义这些模型,我们通过将数据映射到合适的线性空间并使用度量投影运算符来限制Wassersein空间中的结果来利用与其弱利米结构密切相关的Wasserstein空间的表示。通过仔细选择切线,我们能够推出快速的经验方法,利用受约束的B样条近似。作为我们方法的副产品,我们还能够为PCA的PCA进行更快的例程来获得分布。通过仿真研究,我们将我们的方法与先前提出的方法进行比较,表明我们预计的PCA具有类似的性能,即使在拼盘下也是极其灵活的。研究了模型的若干理论性质,并证明了渐近一致性。讨论了两个真实世界应用于美国和风速预测的Covid-19死亡率。
translated by 谷歌翻译
Mixtures of regression are a powerful class of models for regression learning with respect to a highly uncertain and heterogeneous response variable of interest. In addition to being a rich predictive model for the response given some covariates, the parameters in this model class provide useful information about the heterogeneity in the data population, which is represented by the conditional distributions for the response given the covariates associated with a number of distinct but latent subpopulations. In this paper, we investigate conditions of strong identifiability, rates of convergence for conditional density and parameter estimation, and the Bayesian posterior contraction behavior arising in finite mixture of regression models, under exact-fitted and over-fitted settings and when the number of components is unknown. This theory is applicable to common choices of link functions and families of conditional distributions employed by practitioners. We provide simulation studies and data illustrations, which shed some light on the parameter learning behavior found in several popular regression mixture models reported in the literature.
translated by 谷歌翻译