信息技术的进步导致了非常大的数据集,通常保存在不同的存储中心。必须适于现有的统计方法来克服所产生的计算障碍,同时保持统计有效性和效率。分裂和征服方法已应用于许多领域,包括分位式流程,回归分析,主偶数和指数家庭。我们研究了有限高斯混合的分布式学习的分裂和征服方法。我们建议减少策略并开发一种有效的MM算法。新估计器显示在某些一般条件下保持一致并保留根 - N一致性。基于模拟和现实世界数据的实验表明,如果后者是可行的,所提出的分离和征管方法具有基于完整数据集的全球估计的统计性能。如果模型假设与真实数据不匹配,甚至可以略高于全局估算器。它还具有比某些现有方法更好的统计和计算性能。
translated by 谷歌翻译
高斯混合还原(GMR)是通过较低订单近似高阶高斯混合物的问题。它广泛用于隐藏马尔可夫模型中的密度估计,递归跟踪和信念传播。在这项工作中,我们表明GMR可以作为优化问题,最小化两个混合物之间的复合输送分流(CTD)。优化问题可以通过易于实现的大多数 - 最小化(MM)算法来解决。我们表明MM算法在一般条件下收敛。 GMR的一种流行的计算有效方法是基于聚类的迭代算法。然而,这些算法缺乏理论保证它们是否在他们何时收敛或获得一些最佳目标。我们表明,现有的基于聚类的算法是我们MM算法的特殊情况,因此可以建立其理论属性。我们进一步示出了通过在CTD中选择各种成本函数,可以进一步提高基于聚类的算法的性能。进行数值实验以说明我们所提出的延伸的有效性。
translated by 谷歌翻译
近似贝叶斯计算(ABC)使复杂模型中的统计推断能够计算,其可能性难以计算,但易于模拟。 ABC通过接受/拒绝机制构建到后部分布的内核类型近似,该机制比较真实和模拟数据的摘要统计信息。为了避免对汇总统计数据的需求,我们直接将经验分布与通过分类获得的Kullback-Leibler(KL)发散估计值进行比较。特别是,我们将灵活的机器学习分类器混合在ABC中以自动化虚假/真实数据比较。我们考虑传统的接受/拒绝内核以及不需要ABC接受阈值的指数加权方案。我们的理论结果表明,我们的ABC后部分布集中在真实参数周围的速率取决于分类器的估计误差。我们得出了限制后形状的结果,并找到了一个正确缩放的指数内核,渐近常态持有。我们展示了我们对模拟示例以及在股票波动率估计的背景下的真实数据的有用性。
translated by 谷歌翻译
我们研究通过应用具有多个初始化的梯度上升方法来源的估计器的统计特性。我们派生了该估算器的目标的人口数量,并研究了从渐近正常性和自举方法构成的置信区间(CIS)的性质。特别是,我们通过有限数量的随机初始化来分析覆盖范围。我们还通过反转可能性比率测试,得分测试和WALD测试来调查CI,我们表明所得到的CIS可能非常不同。即使MLE是棘手的,我们也提出了一种两个样本测试程序。此外,我们在随机初始化下分析了EM算法的性能,并通过有限数量的初始化导出了CI的覆盖范围。
translated by 谷歌翻译
Mixtures of regression are a powerful class of models for regression learning with respect to a highly uncertain and heterogeneous response variable of interest. In addition to being a rich predictive model for the response given some covariates, the parameters in this model class provide useful information about the heterogeneity in the data population, which is represented by the conditional distributions for the response given the covariates associated with a number of distinct but latent subpopulations. In this paper, we investigate conditions of strong identifiability, rates of convergence for conditional density and parameter estimation, and the Bayesian posterior contraction behavior arising in finite mixture of regression models, under exact-fitted and over-fitted settings and when the number of components is unknown. This theory is applicable to common choices of link functions and families of conditional distributions employed by practitioners. We provide simulation studies and data illustrations, which shed some light on the parameter learning behavior found in several popular regression mixture models reported in the literature.
translated by 谷歌翻译
广义贝叶斯推理使用损失函数而不是可能性的先前信仰更新,因此可以用于赋予鲁棒性,以防止可能的错误规范的可能性。在这里,我们认为广泛化的贝叶斯推论斯坦坦差异作为损失函数的损失,由应用程序的可能性含有难治性归一化常数。在这种情况下,斯坦因差异来避免归一化恒定的评估,并产生封闭形式或使用标准马尔可夫链蒙特卡罗的通用后出版物。在理论层面上,我们显示了一致性,渐近的正常性和偏见 - 稳健性,突出了这些物业如何受到斯坦因差异的选择。然后,我们提供关于一系列棘手分布的数值实验,包括基于内核的指数家庭模型和非高斯图形模型的应用。
translated by 谷歌翻译
学习条件密度和识别影响整个分布的因素是数据驱动应用程序中的重要任务。常规方法主要与摘要统计数据合作,因此不足以进行全面的调查。最近,关于功能回归方法的发展,将密度曲线作为功能结果建模。开发此类模型的一个主要挑战在于非阴性的固有约束和密度结果功能空间的单位积分。为了克服这个基本问题,我们建议Wasserstein分销学习(WDL),这是一个柔性在尺度回归建模框架,始于Wasserstein距离$ W_2 $,作为密度结果空间的适当指标。然后,我们将半参数条件高斯混合模型(SCGMM)作为模型类$ \ mathfrak {f} \ otimes \ Mathcal {t} $作为模型类$ \ mathfrak {scgmm)介绍。生成的度量空间$(\ Mathfrak {f} \ otimes \ Mathcal {t},W_2)$满足所需的约束,并提供密集且封闭的功能子空间。为了拟合所提出的模型,我们基于增强树的大量最小化优化进一步开发了有效的算法。与以前的文献中的方法相比,WDL更好地表征了条件密度的非线性依赖性及其得出的摘要统计。我们通过模拟和现实世界应用来证明WDL框架的有效性。
translated by 谷歌翻译
专家(MOE)的混合是一种流行的统计和机器学习模型,由于其灵活性和效率,多年来一直引起关注。在这项工作中,我们将高斯门控的局部MOE(GLOME)和块对基因协方差局部MOE(Blome)回归模型在异质数据中呈现非线性关系,并在高维预测变量之间具有潜在的隐藏图形结构相互作用。这些模型从计算和理论角度提出了困难的统计估计和模型选择问题。本文致力于研究以混合成分数量,高斯平均专家的复杂性以及协方差矩阵的隐藏块 - 基因结构为特征的Glome或Blome模型集合中的模型选择问题。惩罚最大似然估计框架。特别是,我们建立了以弱甲骨文不平等的形式的非反应风险界限,但前提是罚款的下限。然后,在合成和真实数据集上证明了我们的模型的良好经验行为。
translated by 谷歌翻译
离散状态空间代表了对统计推断的主要计算挑战,因为归一化常数的计算需要在大型或可能的无限集中进行求和,这可能是不切实际的。本文通过开发适合离散可怜的可能性的新型贝叶斯推理程序来解决这一计算挑战。受到连续数据的最新方法学进步的启发,主要思想是使用离散的Fisher Divergence更新有关模型参数的信念,以代替有问题的棘手的可能性。结果是可以使用标准计算工具(例如Markov Chain Monte Carlo)进行采样的广义后部,从而规避了棘手的归一化常数。分析了广义后验的统计特性,并具有足够的后验一致性和渐近正态性的条件。此外,提出了一种新颖的通用后代校准方法。应用程序在离散空间数据的晶格模型和计数数据的多元模型上介绍,在每种情况下,方法论都以低计算成本促进通用的贝叶斯推断。
translated by 谷歌翻译
期望 - 最大化(EM)算法是一种简单的元叠加,当观察到的数据中缺少测量值或数据由可观察到的数据组成时,它已多年来用作统计推断的方法。它的一般属性进行了充分的研究,而且还有无数方法将其应用于个人问题。在本文中,我们介绍了$ em $ $ and算法,EM算法的信息几何公式及其扩展和应用程序以及各种问题。具体而言,我们将看到,可以制定一个异常稳定推理算法,用于计算通道容量的算法,概率单纯性的参数估计方法,特定的多变量分析方法,例如概率模型中的主要组件分析和模态回归中的主成分分析,基质分解和学习生成模型,这些模型最近从几何学角度引起了深度学习的关注。
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译
我们重新审视有限混合模型中最大似然估计量(MLE)的收敛速率的经典问题。 Wasserstein距离已成为分析这些模型参数估计的标准损耗函数,部分原因是其绕过标签切换的能力并准确地表征了具有消失权重的拟合混合物组件的行为。但是,Wasserstein距离只能捕获其余拟合混合物组件中最坏的案例收敛速率。我们证明,当对数似然函数受到惩罚以阻止消失的混合权重时,可以得出更强大的损失函数以解决Wasserstein距离的这种缺点。这些新的损失功能准确地捕获了拟合混合物组件的收敛速率的异质性,并且我们使用它们在各种混合模型中使用它们来锐化现有的侧重和均匀收敛速率。特别是,这些结果表明,受惩罚MLE的组成部分的子集通常比过去的工作预期的要快得多。我们进一步表明,其中一些结论扩展到了传统的MLE。我们的理论发现得到了一项模拟研究的支持,以说明这些改善的收敛速率。
translated by 谷歌翻译
群集分析需要许多决定:聚类方法和隐含的参考模型,群集数,通常,几个超参数和算法调整。在实践中,一个分区产生多个分区,基于验证或选择标准选择最终的分区。存在丰富的验证方法,即隐式或明确地假设某个聚类概念。此外,它们通常仅限于从特定方法获得的分区上操作。在本文中,我们专注于可以通过二次或线性边界分开的群体。参考集群概念通过二次判别符号函数和描述集群大小,中心和分散的参数定义。我们开发了两个名为二次分数的群集质量标准。我们表明这些标准与从一般类椭圆对称分布产生的组一致。对这种类型的组追求在应用程序中是常见的。研究了与混合模型和模型的聚类的似然理论的连接。基于Bootstrap重新采样的二次分数,我们提出了一个选择规则,允许在许多聚类解决方案中选择。所提出的方法具有独特的优点,即它可以比较不能与其他最先进的方法进行比较的分区。广泛的数值实验和实际数据的分析表明,即使某些竞争方法在某些设置中出现优越,所提出的方法也实现了更好的整体性能。
translated by 谷歌翻译
素描的Wasserstein距离($ W^S $)是专门针对有限混合物分布的新概率距离。给定概率分布的集合$ \ MATHCAL {a} $定义的任何度量$ d $,$ w^s $定义为该指标的最判别凸扩展为space $ \ mathcal {s} = \ textrm {cons}(\ Mathcal {a})$ \ Mathcal {a} $的元素混合物的$。我们的表示定理表明,以这种方式构建的空间$(\ MATHCAL {S},w^s)$对$ \ MATHCAL {x} =(\ Mathcal {a},d)$的wasserstein空间是同构的。该结果为Wasserstein距离建立了普遍性,表明它们的特征是它们具有有限混合物的判别能力。我们利用此表示定理提出了基于Kantorovich--Rubenstein二元性的估计方法,并证明了一般定理,该定理表明其估计误差可以由任何估计混合物重量和混合物组件的误差的总和来限制。这些数量的估计器。在$ p $二维离散$ k $ -mixtures的情况下,我们得出了估计$ w^s $的尖锐统计属性,我们显示的可以估计的速率与$ \ sqrt {k/n} $,达到对数因素。我们对这些边界进行了互补,以估计$ k $ - 点度量空间上的分布之间的瓦斯汀距离的风险,这与我们的上限与对数因素相匹配。该结果是用于估计离散分布之间的Wasserstein距离的第一个接近最小的下限。此外,我们构造了混合物权重的$ \ sqrt {n} $渐变正常的估计器,并得出了我们$ w^s $的估计器的$ \ sqrt {n} $分布限制。仿真研究和数据分析为新素描的瓦斯汀距离的适用性提供了强有力的支持。
translated by 谷歌翻译
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact
translated by 谷歌翻译
生成对抗网络(GAN)在数据生成方面取得了巨大成功。但是,其统计特性尚未完全理解。在本文中,我们考虑了GAN的一般$ f $ divergence公式的统计行为,其中包括Kullback- Leibler Divergence与最大似然原理密切相关。我们表明,对于正确指定的参数生成模型,在适当的规律性条件下,所有具有相同歧视类别类别的$ f $ divergence gans均在渐近上等效。 Moreover, with an appropriately chosen local discriminator, they become equivalent to the maximum likelihood estimate asymptotically.对于被误解的生成模型,具有不同$ f $ -Divergences {收敛到不同估计器}的gan,因此无法直接比较。但是,结果表明,对于某些常用的$ f $ -Diverences,原始的$ f $ gan并不是最佳的,因为当更换原始$ f $ gan配方中的判别器培训时,可以实现较小的渐近方差通过逻辑回归。结果估计方法称为对抗梯度估计(年龄)。提供了实证研究来支持该理论,并证明了年龄的优势,而不是模型错误的原始$ f $ gans。
translated by 谷歌翻译
我们解决了如何在没有严格缩放条件的情况下实现分布式分数回归中最佳推断的问题。由于分位数回归(QR)损失函数的非平滑性质,这是具有挑战性的,这使现有方法的使用无效。难度通过应用于本地(每个数据源)和全局目标函数的双光滑方法解决。尽管依赖局部和全球平滑参数的精致组合,但分位数回归模型是完全参数的,从而促进了解释。在低维度中,我们为顺序定义的分布式QR估计器建立了有限样本的理论框架。这揭示了通信成本和统计错误之间的权衡。我们进一步讨论并比较了基于WALD和得分型测试和重采样技术的反转的几种替代置信集结构,并详细介绍了对更极端分数系数有效的改进。在高维度中,采用了一个稀疏的框架,其中提出的双滑目标功能与$ \ ell_1 $ -penalty相辅相成。我们表明,相应的分布式QR估计器在近乎恒定的通信回合之后达到了全球收敛率。一项彻底的模拟研究进一步阐明了我们的发现。
translated by 谷歌翻译
对复杂模型执行精确的贝叶斯推理是计算的难治性的。马尔可夫链蒙特卡罗(MCMC)算法可以提供后部分布的可靠近似,但对于大型数据集和高维模型昂贵。减轻这种复杂性的标准方法包括使用子采样技术或在群集中分发数据。然而,这些方法通常在高维方案中不可靠。我们在此处专注于最近的替代类别的MCMC方案,利用类似于乘客(ADMM)优化算法的庆祝交替方向使用的分裂策略。这些方法似乎提供了凭经验最先进的性能,但其高维层的理论行为目前未知。在本文中,我们提出了一个详细的理论研究,该算法之一称为分裂Gibbs采样器。在规律条件下,我们使用RICCI曲率和耦合思路为此方案建立了明确的收敛速率。我们以数字插图支持我们的理论。
translated by 谷歌翻译
本文研究了主题模型中高维,离散,可能稀疏的混合模型的估计。数据包括在$ n $独立文档中观察到的$ p $单词的多项式计数。在主题模型中,$ p \ times n $预期的单词频率矩阵被认为被分解为$ p \ times k $ word-top-topic矩阵$ a $ a $和a $ k \ times n $ topic-document $ t $ t $ 。由于两个矩阵的列代表属于概率简单的条件概率,因此$ a $的列被视为$ p $ - 二维混合组件,这些混合组件是所有文档共有的,而$ t $的列被视为$ k $二维的混合物特定文档并允许稀疏的权重。主要的兴趣是提供鲜明的,有限的样本,$ \ ell_1 $ norm收敛速率,用于混合物重量$ t $的估计量,当$ a $是已知或未知时。对于已知的$ a $,我们建议MLE估计为$ t $。我们对MLE的非标准分析不仅建立了其$ \ ell_1 $收敛率,而且揭示了一个非凡的属性:MLE,没有额外的正则化,可能完全稀疏,并且包含$ t $的真实零模式。我们进一步表明,MLE既是最佳的最佳选择,又适应了一大批稀疏主题分布中未知的稀疏性。当$ a $未知时,我们通过优化与$ a $ a $的插件的可能性功能来估计$ t $。对于任何满足与$ a $ $ a $的详细条件的估计器$ \ hat {a} $,显示出$ t $的估计器可保留为MLE建立的属性。环境尺寸$ k $和$ p $可以随着样本量而增长。我们的应用是对文档生成分布之间1-Wasserstein距离的估计。我们建议,估计和分析两个概率文档表示之间的新1-Wasserstein距离。
translated by 谷歌翻译
在使用多模式贝叶斯后部分布时,马尔可夫链蒙特卡罗(MCMC)算法难以在模式之间移动,并且默认变分或基于模式的近似推动将低估后不确定性。并且,即使找到最重要的模式,难以评估后部的相对重量。在这里,我们提出了一种使用MCMC,变分或基于模式的模式的并行运行的方法,以便尽可能多地击中多种模式或分离的区域,然后使用贝叶斯堆叠来组合这些用于构建分布的加权平均值的可扩展方法。通过堆叠从多模式后分布的堆叠,最小化交叉验证预测误差的结果,并且代表了比变分推断更好的不确定度,但它不一定是相当于渐近的,以完全贝叶斯推断。我们呈现理论一致性,其中堆叠推断逼近来自未衰退的模型和非混合采样器的真实数据生成过程,预测性能优于完全贝叶斯推断,因此可以被视为祝福而不是模型拼写下的诅咒。我们展示了几个模型家庭的实际实施:潜在的Dirichlet分配,高斯过程回归,分层回归,马蹄素变量选择和神经网络。
translated by 谷歌翻译