自主物理科学领域 - 机器学习指南和从闭环中的实验中学习的领域正在迅速增长。自主系统使科学家能够更聪明,学习速度更快,并在其研究中花费更少的资源。该领域有望改善各种设施的性能,例如实验室,研发管道和仓库。随着自主系统的数量,能力和复杂性的增长,出现了新的挑战 - 这些系统将如何在大型设施中共同运行?我们探索了这个问题的一种解决方案 - 一个多代理框架。我们展示了一个具有1)具有现实资源限制的模拟设施,例如设备使用限制,2)具有多种学习能力和目标的机器学习代理,对实验室仪器的控制以及运行研究活动的能力以及3)网络这些代理可以共享知识并共同努力以实现个人或集体目标。该框架被称为多代理自治设施 - 可扩展的框架又称多任务。多任务允许整个设施的模拟,包括代理启动和代理代理交互。框架模块化使真实世界的自主空间可以阶段上线,模拟仪器逐渐被现实世界的仪器代替。在这里,我们通过模拟材料实验室中的材料探索和优化的现实世界材料科学挑战演示了框架。我们希望该框架在基于代理的设施控制场景中开辟了新的研究领域基于游戏理论。
translated by 谷歌翻译
在过去的几十年中,人工智能(AI)和更具体地进行机械学习的应用,对物理科学进行了显着扩展。特别是,科学知情的AI或科学AI从专注于数据分析到现在控制闭环自主系统中的实验设计,仿真,执行和分析。客串(闭环自主材料勘探和优化)算法采用科学AI来解决两项任务:学习材料系统的组成结构关系,鉴定具有最佳功能性的材料组合物。通过对此进行整合,对构图相图进行了筛选的加速材料,导致发现最佳相变存储器材料。这一成功的关键是能够引导后续测量来最大化构图结构关系或相位图的知识。在这项工作中,我们调查将不同水平的先前物理知识纳入Careo的自主阶段映射的益处。这包括使用来自AFLOW存储库的AB-Initio相位边界数据,这些数据已被示出为在作为先前使用时优化Careo的搜索。
translated by 谷歌翻译
人工智能(AI)启用的自主实验为加速科学发现提供了新的范式。非平衡材料合成是复杂,资源密集型实验的象征性,其加速将是物料发现和发展的流域。最近通过高吞吐量实验加速了非平衡合成相图的映射,但仍然限制了材料研究,因为参数空间太大而无法彻底探索。我们通过科学自主推理代理(SARA)管辖的分层自主实验,证明了加速的合成和促进亚稳材料。 SARA将机器人材料合成和表征与AI方法的层次集成,有效地揭示了处理相图的结构。 SARA设计横向梯度激光尖峰退火(LG-LSA)实验,用于平行材料合成,采用光学光谱速度迅速识别相转变。利用嵌套的主动学习(AL)周期实现了多维参数空间的高效探索,该嵌套主动学习模型包括实验的底层物理以及端到端的不确定性量化。有了这个,萨拉在多种尺度处的协调体现了复杂的科学任务的AI利用。我们通过自主映射综合映射_3 $ System的综合相位边界来展示其性能,导致幅度加速度,即建立一个合成相图,其中包括动力学稳定$ \ delta $ -bi $的条件_2 $ o $ _3 $在室温下,用于氧化固体氧化物燃料电池等电化学技术的关键开发。
translated by 谷歌翻译
下一代物理科学涉及机器人科学家 - 自主物理科学系统,能够在封闭环中实验设计,执行和分析。这样的系统已显示出对科学探索和发现的现实成功,包括首次发现一流的材料。为了构建和使用这些系统,下一代劳动力需要在不同领域的专业知识,包括ML,控制系统,测量科学,材料合成,决策理论等。但是,教育滞后。教育工作者需要一个低成本,易于使用的平台来教授所需的技能。行业还可以使用这样的平台来开发和评估自主物理科学方法论。我们介绍了科学教育的下一代,这是建立低成本自治科学家的套件。该套件在马里兰州大学的两门课程中用于教授本科和研究生自治物理科学。我们以自主模型探索,优化和确定的双重任务来讨论其在课程中的用途及其更大的能力,并以自主实验的“发现”为例。
translated by 谷歌翻译
机器学习方法的最新进展以及扫描探针显微镜(SPMS)的可编程接口的新兴可用性使自动化和自动显微镜在科学界的关注方面推向了最前沿。但是,启用自动显微镜需要开发特定于任务的机器学习方法,了解物理发现与机器学习之间的相互作用以及完全定义的发现工作流程。反过来,这需要平衡领域科学家的身体直觉和先验知识与定义实验目标和机器学习算法的奖励,这些算法可以将它们转化为特定的实验协议。在这里,我们讨论了贝叶斯活跃学习的基本原理,并说明了其对SPM的应用。我们从高斯过程作为一种简单的数据驱动方法和对物理模型的贝叶斯推断作为基于物理功能的扩展的贝叶斯推断,再到更复杂的深内核学习方法,结构化的高斯过程和假设学习。这些框架允许使用先验数据,在光谱数据中编码的特定功能以及在实验过程中表现出的物理定律的探索。讨论的框架可以普遍应用于结合成像和光谱,SPM方法,纳米识别,电子显微镜和光谱法以及化学成像方法的所有技术,并且对破坏性或不可逆测量的影响特别影响。
translated by 谷歌翻译
主动位置估计(APE)是使用一个或多个传感平台本地化一个或多个目标的任务。 APE是搜索和拯救任务,野生动物监测,源期限估计和协作移动机器人的关键任务。 APE的成功取决于传感平台的合作水平,他们的数量,他们的自由度和收集的信息的质量。 APE控制法通过满足纯粹剥削或纯粹探索性标准,可以实现主动感测。前者最大限度地减少了位置估计的不确定性;虽然后者驱动了更接近其任务完成的平台。在本文中,我们定义了系统地分类的主要元素,并批判地讨论该域中的最新状态。我们还提出了一个参考框架作为对截图相关的解决方案的形式主义。总体而言,本调查探讨了主要挑战,并设想了本地化任务的自主感知系统领域的主要研究方向。促进用于搜索和跟踪应用的强大主动感测方法的开发也有益。
translated by 谷歌翻译
即将开发我们呼叫所体现的系统的新一代越来越自主和自学习系统。在将这些系统部署到真实上下文中,我们面临各种工程挑战,因为它以有益的方式协调所体现的系统的行为至关重要,确保他们与我们以人为本的社会价值观的兼容性,并且设计可验证安全可靠的人类-Machine互动。我们正在争辩说,引发系统工程将来自嵌入到体现系统的温室,并确保动态联合的可信度,这种情况意识到的情境意识,意图,探索,探险,不断发展,主要是不可预测的,越来越自主的体现系统在不确定,复杂和不可预测的现实世界环境中。我们还识别了许多迫切性的系统挑战,包括可信赖的体现系统,包括强大而人为的AI,认知架构,不确定性量化,值得信赖的自融化以及持续的分析和保证。
translated by 谷歌翻译
In recent years, the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks. Such challenges can be potentially overcome by integrating communication, computing, caching, and control (i4C) technologies. In this survey, we first give a snapshot of different aspects of the i4C, comprising background, motivation, leading technological enablers, potential applications, and use cases. Next, we describe different models of communication, computing, caching, and control (4C) to lay the foundation of the integration approach. We review current state-of-the-art research efforts related to the i4C, focusing on recent trends of both conventional and artificial intelligence (AI)-based integration approaches. We also highlight the need for intelligence in resources integration. Then, we discuss integration of sensing and communication (ISAC) and classify the integration approaches into various classes. Finally, we propose open challenges and present future research directions for beyond 5G networks, such as 6G.
translated by 谷歌翻译
近年来,机器学习的巨大进步已经开始对许多科学和技术的许多领域产生重大影响。在本文的文章中,我们探讨了量子技术如何从这项革命中受益。我们在说明性示例中展示了过去几年的科学家如何开始使用机器学习和更广泛的人工智能方法来分析量子测量,估计量子设备的参数,发现新的量子实验设置,协议和反馈策略,以及反馈策略,以及通常改善量子计算,量子通信和量子模拟的各个方面。我们重点介绍了公开挑战和未来的可能性,并在未来十年的一些投机愿景下得出结论。
translated by 谷歌翻译
COVID-19的大流行提出了对多个领域决策者的流行预测的重要性,从公共卫生到整个经济。虽然预测流行进展经常被概念化为类似于天气预测,但是它具有一些关键的差异,并且仍然是一项非平凡的任务。疾病的传播受到人类行为,病原体动态,天气和环境条件的多种混杂因素的影响。由于政府公共卫生和资助机构的倡议,捕获以前无法观察到的方面的丰富数据来源的可用性增加了研究的兴趣。这尤其是在“以数据为中心”的解决方案上进行的一系列工作,这些解决方案通过利用非传统数据源以及AI和机器学习的最新创新来增强我们的预测能力的潜力。这项调查研究了各种数据驱动的方法论和实践进步,并介绍了一个概念框架来导航它们。首先,我们列举了与流行病预测相关的大量流行病学数据集和新的数据流,捕获了各种因素,例如有症状的在线调查,零售和商业,流动性,基因组学数据等。接下来,我们将讨论关注最近基于数据驱动的统计和深度学习方法的方法和建模范式,以及将机械模型知识域知识与统计方法的有效性和灵活性相结合的新型混合模型类别。我们还讨论了这些预测系统的现实部署中出现的经验和挑战,包括预测信息。最后,我们重点介绍了整个预测管道中发现的一些挑战和开放问题。
translated by 谷歌翻译
We are currently unable to specify human goals and societal values in a way that reliably directs AI behavior. Law-making and legal interpretation form a computational engine that converts opaque human values into legible directives. "Law Informs Code" is the research agenda capturing complex computational legal processes, and embedding them in AI. Similar to how parties to a legal contract cannot foresee every potential contingency of their future relationship, and legislators cannot predict all the circumstances under which their proposed bills will be applied, we cannot ex ante specify rules that provably direct good AI behavior. Legal theory and practice have developed arrays of tools to address these specification problems. For instance, legal standards allow humans to develop shared understandings and adapt them to novel situations. In contrast to more prosaic uses of the law (e.g., as a deterrent of bad behavior through the threat of sanction), leveraged as an expression of how humans communicate their goals, and what society values, Law Informs Code. We describe how data generated by legal processes (methods of law-making, statutory interpretation, contract drafting, applications of legal standards, legal reasoning, etc.) can facilitate the robust specification of inherently vague human goals. This increases human-AI alignment and the local usefulness of AI. Toward society-AI alignment, we present a framework for understanding law as the applied philosophy of multi-agent alignment. Although law is partly a reflection of historically contingent political power - and thus not a perfect aggregation of citizen preferences - if properly parsed, its distillation offers the most legitimate computational comprehension of societal values available. If law eventually informs powerful AI, engaging in the deliberative political process to improve law takes on even more meaning.
translated by 谷歌翻译
机器学习(ML)系统的开发和部署可以用现代工具轻松执行,但该过程通常是匆忙和意思是结束的。缺乏勤奋会导致技术债务,范围蠕变和未对准的目标,模型滥用和失败,以及昂贵的后果。另一方面,工程系统遵循明确定义的流程和测试标准,以简化高质量,可靠的结果的开发。极端是航天器系统,其中关键任务措施和鲁棒性在开发过程中根深蒂固。借鉴航天器工程和ML的经验(通过域名通过产品的研究),我们开发了一种经过验证的机器学习开发和部署的系统工程方法。我们的“机器学习技术准备水平”(MLTRL)框架定义了一个原则的过程,以确保强大,可靠和负责的系统,同时为ML工作流程流线型,包括来自传统软件工程的关键区别。 MLTRL甚至更多,MLTRL为跨团队和组织的人们定义了一个人工智能和机器学习技术的人员。在这里,我们描述了通过生产化和部署在医学诊断,消费者计算机视觉,卫星图像和粒子物理学等领域,以通过生产和部署在基本研究中开发ML方法的几个现实世界使用情况的框架和阐明。
translated by 谷歌翻译
由于其数据效率,贝叶斯优化已经出现在昂贵的黑盒优化的最前沿。近年来,关于新贝叶斯优化算法及其应用的发展的研究激增。因此,本文试图对贝叶斯优化的最新进展进行全面和更新的调查,并确定有趣的开放问题。我们将贝叶斯优化的现有工作分为九个主要群体,并根据所提出的算法的动机和重点。对于每个类别,我们介绍了替代模型的构建和采集功能的适应的主要进步。最后,我们讨论了开放的问题,并提出了有希望的未来研究方向,尤其是在分布式和联合优化系统中的异质性,隐私保护和公平性方面。
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
机器学习(ML)为生物处理工程的发展做出了重大贡献,但其应用仍然有限,阻碍了生物过程自动化的巨大潜力。用于模型构建自动化的ML可以看作是引入另一种抽象水平的一种方式,将专家的人类集中在生物过程开发的最认知任务中。首先,概率编程用于预测模型的自动构建。其次,机器学习会通过计划实验来测试假设并进行调查以收集信息性数据来自动评估替代决策,以收集基于模型预测不确定性的模型选择的信息数据。这篇评论提供了有关生物处理开发中基于ML的自动化的全面概述。一方面,生物技术和生物工程社区应意识到现有ML解决方案在生物技术和生物制药中的应用的限制。另一方面,必须确定缺失的链接,以使ML和人工智能(AI)解决方案轻松实施在有价值的生物社区解决方案中。我们总结了几个重要的生物处理系统的ML实施,并提出了两个至关重要的挑战,这些挑战仍然是生物技术自动化的瓶颈,并减少了生物技术开发的不确定性。没有一个合适的程序;但是,这项综述应有助于确定结合生物技术和ML领域的潜在自动化。
translated by 谷歌翻译
机器学习(ML)与高能物理学(HEP)的快速发展的交集给我们的社区带来了机会和挑战。远远超出了标准ML工具在HEP问题上的应用,这两个领域的一代人才素养正在开发真正的新的和潜在的革命性方法。迫切需要支持跨学科社区推动这些发展的需求,包括在这两个领域的交汇处为专门研究提供资金,在大学投资高性能计算以及调整分配政策以支持这项工作,开发社区工具和标准,并为年轻研究人员提供教育和职业道路,从而吸引了机器学习的智力活力,以吸引高能量物理学。
translated by 谷歌翻译
This white paper lays out a vision of research and development in the field of artificial intelligence for the next decade (and beyond). Its denouement is a cyber-physical ecosystem of natural and synthetic sense-making, in which humans are integral participants$\unicode{x2014}$what we call ''shared intelligence''. This vision is premised on active inference, a formulation of adaptive behavior that can be read as a physics of intelligence, and which inherits from the physics of self-organization. In this context, we understand intelligence as the capacity to accumulate evidence for a generative model of one's sensed world$\unicode{x2014}$also known as self-evidencing. Formally, this corresponds to maximizing (Bayesian) model evidence, via belief updating over several scales: i.e., inference, learning, and model selection. Operationally, this self-evidencing can be realized via (variational) message passing or belief propagation on a factor graph. Crucially, active inference foregrounds an existential imperative of intelligent systems; namely, curiosity or the resolution of uncertainty. This same imperative underwrites belief sharing in ensembles of agents, in which certain aspects (i.e., factors) of each agent's generative world model provide a common ground or frame of reference. Active inference plays a foundational role in this ecology of belief sharing$\unicode{x2014}$leading to a formal account of collective intelligence that rests on shared narratives and goals. We also consider the kinds of communication protocols that must be developed to enable such an ecosystem of intelligences and motivate the development of a shared hyper-spatial modeling language and transaction protocol, as a first$\unicode{x2014}$and key$\unicode{x2014}$step towards such an ecology.
translated by 谷歌翻译
Agent-based modeling (ABM) is a well-established paradigm for simulating complex systems via interactions between constituent entities. Machine learning (ML) refers to approaches whereby statistical algorithms 'learn' from data on their own, without imposing a priori theories of system behavior. Biological systems -- from molecules, to cells, to entire organisms -- consist of vast numbers of entities, governed by complex webs of interactions that span many spatiotemporal scales and exhibit nonlinearity, stochasticity and intricate coupling between entities. The macroscopic properties and collective dynamics of such systems are difficult to capture via continuum modelling and mean-field formalisms. ABM takes a 'bottom-up' approach that obviates these difficulties by enabling one to easily propose and test a set of well-defined 'rules' to be applied to the individual entities (agents) in a system. Evaluating a system and propagating its state over discrete time-steps effectively simulates the system, allowing observables to be computed and system properties to be analyzed. Because the rules that govern an ABM can be difficult to abstract and formulate from experimental data, there is an opportunity to use ML to help infer optimal, system-specific ABM rules. Once such rule-sets are devised, ABM calculations can generate a wealth of data, and ML can be applied there too -- e.g., to probe statistical measures that meaningfully describe a system's stochastic properties. As an example of synergy in the other direction (from ABM to ML), ABM simulations can generate realistic datasets for training ML algorithms (e.g., for regularization, to mitigate overfitting). In these ways, one can envision various synergistic ABM$\rightleftharpoons$ML loops. This review summarizes how ABM and ML have been integrated in contexts that span spatiotemporal scales, from cellular to population-level epidemiology.
translated by 谷歌翻译
分层多代理系统提供了分析,模型和模拟复杂系统的方便和相关的方式,这些方法由不同的抽象级别交互的大量实体组成。在本文中,我们引入了哈姆雷特(基于等级代理的机器学习平台),一个基于分层多种代理系统的混合机学习平台,促进了地理上和/或本地分布式机器学习实体的研究和民主化。所提出的系统模拟了一种机器学习解决方案,作为超图,并根据其先天的能力和学习技能自主地建立异质代理的多级结构。哈姆雷特辅助机器学习系统的设计和管理,并为研究社区提供分析功能,以通过灵活和可定制的查询评估现有和/或新算法/数据集。所提出的混合机器学习平台不承担对学习算法/数据集的类型的限制,并且理论上被证明是声音,并且具有多项式计算要求。此外,它是在120次训练和四个在24台机器学习算法和9个标准数据集上执行的四个广义批量测试任务的经验检查。提供的实验结果不仅在平台的一致性和正确性方面建立了信心,而且还证明了其测试和分析能力。
translated by 谷歌翻译
无线电接入网络(RAN)技术继续见证巨大的增长,开放式运行越来越最近的势头。在O-RAN规范中,RAN智能控制器(RIC)用作自动化主机。本文介绍了对O-RAN堆栈相关的机器学习(ML)的原则,特别是加强学习(RL)。此外,我们审查无线网络的最先进的研究,并将其投入到RAN框架和O-RAN架构的层次结构上。我们在整个开发生命周期中提供ML / RL模型面临的挑战的分类:从系统规范到生产部署(数据采集,模型设计,测试和管理等)。为了解决挑战,我们将一组现有的MLOPS原理整合,当考虑RL代理时,具有独特的特性。本文讨论了系统的生命周期模型开发,测试和验证管道,称为:RLOPS。我们讨论了RLOP的所有基本部分,包括:模型规范,开发和蒸馏,生产环境服务,运营监控,安全/安全和数据工程平台。根据这些原则,我们提出了最佳实践,以实现自动化和可重复的模型开发过程。
translated by 谷歌翻译