广义添加剂模型(GAM)迅速成为完全解释的机器学习的主要选择。但是,与不可解释的方法(例如DNNS)不同,它们缺乏表达能力和易于可扩展性,因此对于实际任务而言并不是可行的替代方法。我们提出了一个新的游戏类,该类别使用多项式的张量秩分解来学习功能强大的,{\ em完全解释}模型。我们的方法标题为“可扩展多项式添加剂模型(垃圾邮件”)是毫不舒服的可扩展性,并且模型{\ em all}的高阶特征交互没有组合参数爆炸。垃圾邮件的表现优于所有当前可解释的方法,并在一系列现实世界的基准测试中匹配DNN/XGBoost性能,并具有多达数十万个功能。我们通过人类主题评估证明,垃圾邮件在实践中明显更容易解释,因此是DNN毫不费力的替代者,用于创建适合大规模机器学习的可解释和高性能系统。源代码可在https://github.com/facebookresearch/nbm-pam上获得。
translated by 谷歌翻译
由于在现实世界应用中广泛使用复杂的机器学习模型,解释模型预测变得至关重要。但是,这些模型通常是黑盒深神经网络,通过具有已知忠实限制的方法来解释事后。广义添加剂模型(GAM)是一种可解释的模型类别,通过分别学习每个功能的非线性形状函数来解决此限制,然后在顶部进行线性模型。但是,这些模型通常很难训练,需要许多参数,并且难以扩展。我们提出了一个全新的游戏亚家族,以利用形状函数的基础分解。在所有功能之间共享少数基础函数,并共同用于给定任务,因此使我们的模型比例更好地到具有高维功能的大规模数据,尤其是当功能稀疏时。我们提出了一种表示是神经基依据(NBM)的体系结构,该模型使用单个神经网络来学习这些基础。在各种表格和图像数据集上,我们证明,对于可解释的机器学习,NBMS是准确性,模型大小和吞吐量的最先进,并且可以轻松模拟所有高阶特征交互。源代码可在https://github.com/facebookresearch/nbm-pam上获得。
translated by 谷歌翻译
目前,在统计严格的方法(如线性回归或添加剂花纹)与使用神经网络的强大深度方法之间的性能差距很大。以前试图缩小此差距的工作未能完全研究成倍增长的功能组合数量,这些功能组合在训练过程中会自动考虑这些组合。在这项工作中,我们开发了一种可拖动的选择算法,以通过利用特征交互检测中的技术来有效地识别必要的特征组合。我们提出的稀疏互动添加剂网络(Sian)构建了从这些简单且可解释的模型到完全连接的神经网络的桥梁。Sian在多个大规模表格数据集中对最先进的方法实现了竞争性能,并始终发现神经网络的建模能力与更简单方法的普遍性之间的最佳权衡。
translated by 谷歌翻译
域泛化涉及从异构地收集培训来源的分类器,以便它推广到从类似的未知目标域中汲取的数据,具有大规模学习和个性化推断的应用。在许多设置中,隐私问题禁止获取培训数据样本的域标签,而是只有汇总培训点集合。利用域标签来创建域不变特征表示的现有方法在此设置中不可应用,需要替代方法来学习概括的分类器。在本文中,我们提出了一个解决这个问题的域 - 自适应方法,它分为两个步骤:(a)我们在仔细选择的特征空间内培训数据来创建伪域,(b)使用这些伪域学习域 - 自适应分类器,该分类器使用有关它所属的输入和伪域的信息进行预测。我们的方法在各种域泛化基准测试中实现了最先进的性能,而无需使用域标签。此外,我们使用群集信息提供关于域泛化的新颖理论保障。我们的方法可以适用于基于集合的方法,即使在大型基准数据集上也可以提供大量的收益。代码可以在:https://github.com/xavierohan/adaclust_domainbed
translated by 谷歌翻译
在本文中,我们对在表格数据的情况下进行了详尽的理论分析。我们证明,在较大的样本限制中,可以按照算法参数的函数以及与黑框模型相关的一些期望计算来计算表格石灰提供的可解释系数。当要解释的函数具有一些不错的代数结构(根据坐标的子集,线性,乘法或稀疏)时,我们的分析提供了对Lime提供的解释的有趣见解。这些可以应用于一系列机器学习模型,包括高斯内核或卡车随机森林。例如,对于线性函数,我们表明Lime具有理想的属性,可以提供与函数系数成正比的解释,以解释并忽略该函数未使用的坐标来解释。对于基于分区的回归器,另一方面,我们表明石灰会产生可能提供误导性解释的不希望的人工制品。
translated by 谷歌翻译
度量启发是最新的框架,用于启发分类性能指标,可以根据任务和上下文最好地反映隐性用户偏好。但是,可用的启发策略仅限于预测率的线性(或准线性)函数,这实际上对包括公平性在内的许多应用可能是限制的。本文制定了一种策略,以引发由二次功能定义的更灵活的多类指标,旨在更好地反映人类的偏好。我们展示了它在启发基于二次违规的集体 - fair量指标中的应用。我们的策略仅需要相对的偏好反馈,对噪声是强大的,并且达到了近乎最佳的查询复杂性。我们将此策略进一步扩展到启发多项式指标,从而扩大了用例以进行度量启发。
translated by 谷歌翻译
超参数优化构成了典型的现代机器学习工作流程的很大一部分。这是由于这样一个事实,即机器学习方法和相应的预处理步骤通常只有在正确调整超参数时就会产生最佳性能。但是在许多应用中,我们不仅有兴趣仅仅为了预测精度而优化ML管道;确定最佳配置时,必须考虑其他指标或约束,从而导致多目标优化问题。由于缺乏知识和用于多目标超参数优化的知识和容易获得的软件实现,因此通常在实践中被忽略。在这项工作中,我们向读者介绍了多个客观超参数优化的基础知识,并激励其在应用ML中的实用性。此外,我们从进化算法和贝叶斯优化的领域提供了现有优化策略的广泛调查。我们说明了MOO在几个特定ML应用中的实用性,考虑了诸如操作条件,预测时间,稀疏,公平,可解释性和鲁棒性之类的目标。
translated by 谷歌翻译
Influence diagnostics such as influence functions and approximate maximum influence perturbations are popular in machine learning and in AI domain applications. Influence diagnostics are powerful statistical tools to identify influential datapoints or subsets of datapoints. We establish finite-sample statistical bounds, as well as computational complexity bounds, for influence functions and approximate maximum influence perturbations using efficient inverse-Hessian-vector product implementations. We illustrate our results with generalized linear models and large attention based models on synthetic and real data.
translated by 谷歌翻译
Accurate uncertainty quantification is a major challenge in deep learning, as neural networks can make overconfident errors and assign high confidence predictions to out-of-distribution (OOD) inputs. The most popular approaches to estimate predictive uncertainty in deep learning are methods that combine predictions from multiple neural networks, such as Bayesian neural networks (BNNs) and deep ensembles. However their practicality in real-time, industrial-scale applications are limited due to the high memory and computational cost. Furthermore, ensembles and BNNs do not necessarily fix all the issues with the underlying member networks. In this work, we study principled approaches to improve uncertainty property of a single network, based on a single, deterministic representation. By formalizing the uncertainty quantification as a minimax learning problem, we first identify distance awareness, i.e., the model's ability to quantify the distance of a testing example from the training data, as a necessary condition for a DNN to achieve high-quality (i.e., minimax optimal) uncertainty estimation. We then propose Spectral-normalized Neural Gaussian Process (SNGP), a simple method that improves the distance-awareness ability of modern DNNs with two simple changes: (1) applying spectral normalization to hidden weights to enforce bi-Lipschitz smoothness in representations and (2) replacing the last output layer with a Gaussian process layer. On a suite of vision and language understanding benchmarks, SNGP outperforms other single-model approaches in prediction, calibration and out-of-domain detection. Furthermore, SNGP provides complementary benefits to popular techniques such as deep ensembles and data augmentation, making it a simple and scalable building block for probabilistic deep learning. Code is open-sourced at https://github.com/google/uncertainty-baselines
translated by 谷歌翻译
我们为特殊神经网络架构,称为运营商复发性神经网络的理论分析,用于近似非线性函数,其输入是线性运算符。这些功能通常在解决方案算法中出现用于逆边值问题的问题。传统的神经网络将输入数据视为向量,因此它们没有有效地捕获与对应于这种逆问题中的数据的线性运算符相关联的乘法结构。因此,我们介绍一个类似标准的神经网络架构的新系列,但是输入数据在向量上乘法作用。由较小的算子出现在边界控制中的紧凑型操作员和波动方程的反边值问题分析,我们在网络中的选择权重矩阵中促进结构和稀疏性。在描述此架构后,我们研究其表示属性以及其近似属性。我们还表明,可以引入明确的正则化,其可以从所述逆问题的数学分析导出,并导致概括属性上的某些保证。我们观察到重量矩阵的稀疏性改善了概括估计。最后,我们讨论如何将运营商复发网络视为深度学习模拟,以确定诸如用于从边界测量的声波方程中重建所未知的WAVESTED的边界控制的算法算法。
translated by 谷歌翻译
重要的理论工作已经确定,在特定的制度中,通过梯度下降训练的神经网络像内核方法一样行为。但是,在实践中,众所周知,神经网络非常优于其相关内核。在这项工作中,我们通过证明有一大批功能可以通过内核方法有效地学习,但是可以通过学习表示与相关的学习表示,可以轻松地学习这一差距。到目标任务。我们还证明了这些表示允许有效的转移学习,这在内核制度中是不可能的。具体而言,我们考虑学习多项式的问题,该问题仅取决于少数相关的方向,即$ f^\ star(x)= g(ux)$ withy $ u:\ r^d \ to \ r^r $ d \ gg r $。当$ f^\ star $的度数为$ p $时,众所周知,在内核制度中学习$ f^\ star $是必要的。我们的主要结果是,梯度下降学会了数据的表示,这仅取决于与$ f^\ star $相关的指示。这导致改进的样本复杂性为$ n \ asymp d^2 r + dr^p $。此外,在转移学习设置中,源和目标域中的数据分布共享相同的表示$ u $,但具有不同的多项式头部,我们表明,转移学习的流行启发式启发式启发式具有目标样本复杂性,独立于$ d $。
translated by 谷歌翻译
当我们扩大数据集,模型尺寸和培训时间时,深入学习方法的能力中存在越来越多的经验证据。尽管有一些关于这些资源如何调节统计能力的说法,但对它们对模型培训的计算问题的影响知之甚少。这项工作通过学习$ k $ -sparse $ n $ bits的镜头进行了探索,这是一个构成理论计算障碍的规范性问题。在这种情况下,我们发现神经网络在扩大数据集大小和运行时间时会表现出令人惊讶的相变。特别是,我们从经验上证明,通过标准培训,各种体系结构以$ n^{o(k)} $示例学习稀疏的平等,而损失(和错误)曲线在$ n^{o(k)}后突然下降。 $迭代。这些积极的结果几乎匹配已知的SQ下限,即使没有明确的稀疏性先验。我们通过理论分析阐明了这些现象的机制:我们发现性能的相变不到SGD“在黑暗中绊倒”,直到它找到了隐藏的特征集(自然算法也以$ n^中的方式运行{o(k)} $ time);取而代之的是,我们表明SGD逐渐扩大了人口梯度的傅立叶差距。
translated by 谷歌翻译
许多实际优化问题涉及不确定的参数,这些参数具有概率分布,可以使用上下文特征信息来估算。与首先估计不确定参数的分布然后基于估计优化目标的标准方法相反,我们提出了一个\ textIt {集成条件估计 - 优化}(ICEO)框架,该框架估计了随机参数的潜在条件分布同时考虑优化问题的结构。我们将随机参数的条件分布与上下文特征之间的关系直接建模,然后以与下游优化问题对齐的目标估算概率模型。我们表明,我们的ICEO方法在适度的规律性条件下渐近一致,并以概括范围的形式提供有限的性能保证。在计算上,使用ICEO方法执行估计是一种非凸面且通常是非差异的优化问题。我们提出了一种通用方法,用于近似从估计的条件分布到通过可区分函数的最佳决策的潜在非差异映射,这极大地改善了应用于非凸问题的基于梯度的算法的性能。我们还提供了半代理案例中的多项式优化解决方案方法。还进行了数值实验,以显示我们在不同情况下的方法的经验成功,包括数据样本和模型不匹配。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
本文为信号去噪提供了一般交叉验证框架。然后将一般框架应用于非参数回归方法,例如趋势过滤和二元推车。然后显示所得到的交叉验证版本以获得最佳调谐的类似物所熟知的几乎相同的收敛速度。没有任何先前的趋势过滤或二元推车的理论分析。为了说明框架的一般性,我们还提出并研究了两个基本估算器的交叉验证版本;套索用于高维线性回归和矩阵估计的奇异值阈值阈值。我们的一般框架是由Chatterjee和Jafarov(2015)的想法的启发,并且可能适用于使用调整参数的广泛估算方法。
translated by 谷歌翻译
Interpretability provides a means for humans to verify aspects of machine learning (ML) models and empower human+ML teaming in situations where the task cannot be fully automated. Different contexts require explanations with different properties. For example, the kind of explanation required to determine if an early cardiac arrest warning system is ready to be integrated into a care setting is very different from the type of explanation required for a loan applicant to help determine the actions they might need to take to make their application successful. Unfortunately, there is a lack of standardization when it comes to properties of explanations: different papers may use the same term to mean different quantities, and different terms to mean the same quantity. This lack of a standardized terminology and categorization of the properties of ML explanations prevents us from both rigorously comparing interpretable machine learning methods and identifying what properties are needed in what contexts. In this work, we survey properties defined in interpretable machine learning papers, synthesize them based on what they actually measure, and describe the trade-offs between different formulations of these properties. In doing so, we enable more informed selection of task-appropriate formulations of explanation properties as well as standardization for future work in interpretable machine learning.
translated by 谷歌翻译
我们从经典非参数回归问题的镜头研究神经网络(NN)的理论,重点是NN具有异质平滑度自适应估计功能的能力 - BESOV或有界变异(BV)类的功能属性。关于此问题的现有工作需要根据功能空间和样本量来调整NN体系结构。我们考虑了Deep Relu网络的“平行NN”变体,并表明标准重量衰减相当于促进端到端学习的系数向量的$ \ ell_p $ -sparsity($ 0 <p <1 $)函数基础,即字典。使用这种等效性,我们进一步确定,仅通过调整权重衰减,这种平行的NN就可以任意接近BESOV和BV类的最小值率达到估计误差。值得注意的是,随着NN的深度,它呈指数级接近最佳。我们的研究为为什么深度重要以及NNS如何比内核方法更强大。
translated by 谷歌翻译
许多现代数据集,从神经影像和地统计数据等领域都以张量数据的随机样本的形式来说,这可以被理解为对光滑的多维随机功能的嘈杂观察。来自功能数据分析的大多数传统技术被维度的诅咒困扰,并且随着域的尺寸增加而迅速变得棘手。在本文中,我们提出了一种学习从多维功能数据样本的持续陈述的框架,这些功能是免受诅咒的几种表现形式的。这些表示由一组可分离的基函数构造,该函数被定义为最佳地适应数据。我们表明,通过仔细定义的数据的仔细定义的减少转换的张测仪分解可以有效地解决所得到的估计问题。使用基于差分运算符的惩罚,并入粗糙的正则化。也建立了相关的理论性质。在模拟研究中证明了我们对竞争方法的方法的优点。我们在神经影像动物中得出真正的数据应用。
translated by 谷歌翻译
Many scientific problems require identifying a small set of covariates that are associated with a target response and estimating their effects. Often, these effects are nonlinear and include interactions, so linear and additive methods can lead to poor estimation and variable selection. Unfortunately, methods that simultaneously express sparsity, nonlinearity, and interactions are computationally intractable -- with runtime at least quadratic in the number of covariates, and often worse. In the present work, we solve this computational bottleneck. We show that suitable interaction models have a kernel representation, namely there exists a "kernel trick" to perform variable selection and estimation in $O$(# covariates) time. Our resulting fit corresponds to a sparse orthogonal decomposition of the regression function in a Hilbert space (i.e., a functional ANOVA decomposition), where interaction effects represent all variation that cannot be explained by lower-order effects. On a variety of synthetic and real data sets, our approach outperforms existing methods used for large, high-dimensional data sets while remaining competitive (or being orders of magnitude faster) in runtime.
translated by 谷歌翻译
We study a natural extension of classical empirical risk minimization, where the hypothesis space is a random subspace of a given space. In particular, we consider possibly data dependent subspaces spanned by a random subset of the data, recovering as a special case Nystrom approaches for kernel methods. Considering random subspaces naturally leads to computational savings, but the question is whether the corresponding learning accuracy is degraded. These statistical-computational tradeoffs have been recently explored for the least squares loss and self-concordant loss functions, such as the logistic loss. Here, we work to extend these results to convex Lipschitz loss functions, that might not be smooth, such as the hinge loss used in support vector machines. This unified analysis requires developing new proofs, that use different technical tools, such as sub-gaussian inputs, to achieve fast rates. Our main results show the existence of different settings, depending on how hard the learning problem is, for which computational efficiency can be improved with no loss in performance.
translated by 谷歌翻译