大型视力模型的无监督预训练方法已显示出可以提高下游监督任务的性能。为卫星图像开发类似的技术带来了重要的机会,因为未标记的数据很丰富,并且固有的时间和多光谱结构提供了途径,以进一步改善现有的训练策略。在本文中,我们提出了Satmae,这是基于蒙面自动编码器(MAE)的时间或多光谱卫星图像的预训练框架。为了利用时间信息,我们包括一个时间嵌入以及跨时间独立掩盖图像贴片。此外,我们证明将多光谱数据编码为具有不同光谱位置编码的频段组是有益的。我们的方法在基准数据集(最高$ \ uparrow $ 7 \%)上的监督学习绩效方面都对先前最先前的技术产生了强大的改进,以及在下游遥感任务(包括土地)上的转移学习绩效封面分类(最多$ \ uparrow $ 14 \%)和语义细分。
translated by 谷歌翻译
在深度学习研究中,自学学习(SSL)引起了极大的关注,引起了计算机视觉和遥感社区的兴趣。尽管计算机视觉取得了很大的成功,但SSL在地球观测领域的大部分潜力仍然锁定。在本文中,我们对在遥感的背景下为计算机视觉的SSL概念和最新发展提供了介绍,并回顾了SSL中的概念和最新发展。此外,我们在流行的遥感数据集上提供了现代SSL算法的初步基准,从而验证了SSL在遥感中的潜力,并提供了有关数据增强的扩展研究。最后,我们确定了SSL未来研究的有希望的方向的地球观察(SSL4EO),以铺平了两个领域的富有成效的相互作用。
translated by 谷歌翻译
本文显示屏蔽的自动化器(MAE)是可扩展的自我监督学习者,用于计算机愿景。我们的MAE方法很简单:我们掩盖输入图像的随机补丁并重建缺失像素。它基于两个核心设计。首先,我们开发一个不对称的编码器解码器架构,其中编码器仅在掩码的可见子集(没有掩码令牌)上,以及重量解码器,该重量解码器从潜像和掩码令牌重建原始图像。其次,我们发现掩蔽了高比例的输入图像,例如,75%,产生非凡和有意义的自我监督任务。耦合这两种设计使我们能够有效且有效地培训大型模型:我们加速培训(3倍或更多)并提高准确性。我们可扩展的方法允许学习概括的高容量模型:例如,Vanilla Vit-Maxim模型在使用Imagenet-1K数据的方法中实现最佳准确性(87.8%)。下游任务中的转移性能优于监督预培训并显示有前途的缩放行为。
translated by 谷歌翻译
通常需要在大型数据集上进行预训练的视频变压器,以在相对较小的数据集上实现首要性能。在本文中,我们表明视频蒙面的自动编码器(Videomae)是用于自我监督视频预训练(SSVP)的数据效率学习者。我们的启发受到了最近的ImageMae的启发,并提出了具有极高比例的定制视频管掩蔽。这种简单的设计使视频重建成为更具挑战性的自我判断任务,从而鼓励在此预训练过程中提取更有效的视频表示。我们在SSVP上获得了三个重要发现:(1)屏蔽比的比例极高(即90%至95%)仍然可以产生良好的视频性能。在时间上冗余的视频内容比图像更高的掩蔽率。 (2)视频在很小的数据集(即3K-4K视频)上取得了令人印象深刻的结果,而无需使用任何额外的数据。 (3)视频表明,数据质量比SSVP的数据数量更重要。在培训和目标数据集之间的域转移是一个重要问题。值得注意的是,我们与香草VIT的视频在动力学400上可以达到85.8%,在不使用任何额外数据的情况下,在HMDB51上的V2上有75.3%,UCF101的某些东西为75.3%,在UCF101上获得90.8%,HMDB51上的90.8%和61.1%。代码可从https://github.com/mcg-nju/videomae获得。
translated by 谷歌翻译
自我监督的方法在计算机视野领域表现出巨大的成功,包括在遥感和医学成像中的应用。最流行的基于损坏的方法,例如SIMCLR,MOCO,MOCO-V2,通过在图像上应用人为的增强来创建正对并将其与负面示例进行对比,从而使用同一图像的多个视图。尽管这些技术运行良好,但大多数这些技术都在ImageNet(以及类似的计算机视觉数据集)上进行了调整。尽管有一些尝试捕获积极样本中更丰富的变形集,但在这项工作中,我们探索了一种有希望的替代方法,可以在对比度学习框架内为遥感数据生成积极的示例。可以将来自同一位置的不同传感器捕获的图像可以被认为是同一场景的强烈增强实例,从而消除了探索和调整一套手工制作的强大增强的需求。在本文中,我们提出了一个简单的双编码框架,该框架已在Sentinel-1和Sentinel-2图像对的大型未标记数据集(〜1m)上进行了预训练。我们测试了两个遥感下游任务的嵌入:洪水分割和土地覆盖映射,并从经验上表明,从该技术中学到的嵌入优于通过积极的数据增强来收集积极示例的传统技术。
translated by 谷歌翻译
我们呈现蒙版特征预测(MaskFeat),用于自我监督的视频模型的预训练。我们的方法首先随机地掩盖输入序列的一部分,然后预测蒙面区域的特征。我们研究五种不同类型的功能,找到面向导向渐变(HOG)的直方图,手工制作的特征描述符,在性能和效率方面尤其良好。我们观察到猪中的局部对比标准化对于良好的结果至关重要,这与使用HOG进行视觉识别的早期工作符合。我们的方法可以学习丰富的视觉知识和基于大规模的变压器的模型。在不使用额外的模型重量或监督的情况下,在未标记视频上预先培训的MaskFeat在动力学-400上使用MVIT-L达到86.7%的前所未有的结果,在动力学-600,88.3%上,88.3%,在动力学-700,88.8地图上SSV2上的75.0%。 MaskFeat进一步推广到图像输入,其可以被解释为具有单个帧的视频,并在想象中获得竞争结果。
translated by 谷歌翻译
基于变压器的体系结构已在各种视觉域(最著名的图像和视频)中变得更具竞争力。虽然先前的工作已经孤立地研究了这些模式,但拥有一个共同的体系结构表明,人们可以训练单个统一模型以多种视觉方式。事先尝试进行统一建模通常使用针对视觉任务量身定制的体系结构,或与单个模态模型相比获得较差的性能。在这项工作中,我们表明可以使用蒙版的自动编码来在图像和视频上训练简单的视觉变压器,而无需任何标记的数据。该单个模型学习了与图像和视频基准上的单模式表示相当或更好的视觉表示,同时使用了更简单的体系结构。特别是,我们的单一预算模型可以进行审核,以在ImageNet上获得86.5%的速度,而在挑战性的事物V2视频基准测试中,可以实现75.3%的范围。此外,可以通过丢弃90%的图像和95%的视频补丁来学习该模型,从而实现非常快速的训练。
translated by 谷歌翻译
General perception systems such as Perceivers can process arbitrary modalities in any combination and are able to handle up to a few hundred thousand inputs. They achieve this generality by using exclusively global attention operations. This however hinders them from scaling up to the inputs sizes required to process raw high-resolution images or video. In this paper, we show that some degree of locality can be introduced back into these models, greatly improving their efficiency while preserving their generality. To scale them further, we introduce a self-supervised approach that enables learning dense low-dimensional positional embeddings for very large signals. We call the resulting model a Hierarchical Perceiver (HiP). In sum our contributions are: 1) scaling Perceiver-type models to raw high-resolution images and audio+video, 2) showing the feasibility of learning 1M+ positional embeddings from scratch using masked auto-encoding, 3) demonstrating competitive performance on raw data from ImageNet, AudioSet, PASCAL VOC, ModelNet40 and Kinetics datasets with the same exact, unchanged model and without specialized preprocessing or any tokenization.
translated by 谷歌翻译
Remote sensing imagery provides comprehensive views of the Earth, where different sensors collect complementary data at different spatial scales. Large, pretrained models are commonly finetuned with imagery that is heavily augmented to mimic different conditions and scales, with the resulting models used for various tasks with imagery from a range of spatial scales. Such models overlook scale-specific information in the data. In this paper, we present Scale-MAE, a pretraining method that explicitly learns relationships between data at different, known scales throughout the pretraining process. Scale-MAE pretrains a network by masking an input image at a known input scale, where the area of the Earth covered by the image determines the scale of the ViT positional encoding, not the image resolution. Scale-MAE encodes the masked image with a standard ViT backbone, and then decodes the masked image through a bandpass filter to reconstruct low/high frequency images at lower/higher scales. We find that tasking the network with reconstructing both low/high frequency images leads to robust multiscale representations for remote sensing imagery. Scale-MAE achieves an average of a $5.0\%$ non-parametric kNN classification improvement across eight remote sensing datasets compared to current state-of-the-art and obtains a $0.9$ mIoU to $3.8$ mIoU improvement on the SpaceNet building segmentation transfer task for a range of evaluation scales.
translated by 谷歌翻译
大规模数据集的预培训模型,如想象成,是计算机视觉中的标准实践。此范例对于具有小型培训套的任务特别有效,其中高容量模型往往会过度装备。在这项工作中,我们考虑一个自我监督的预训练场景,只能利用目标任务数据。我们考虑数据集,如斯坦福汽车,草图或可可,这是比想象成小的数量的顺序。我们的研究表明,在本文中介绍的Beit或诸如Beit或Variant的去噪对预训练数据的类型和大小比通过比较图像嵌入来训练的流行自我监督方法更加强大。我们获得了竞争性能与ImageNet预训练相比,来自不同域的各种分类数据集。在Coco上,当专注于使用Coco Images进行预训练时,检测和实例分割性能超过了可比设置中的监督Imagenet预训练。
translated by 谷歌翻译
哥内克人Sentinel Imagery的纯粹卷的可用性为使用深度学习的大尺度创造了新的土地利用陆地覆盖(Lulc)映射的机会。虽然在这种大型数据集上培训是一个非琐碎的任务。在这项工作中,我们试验Lulc Image分类和基准不同最先进模型的Bigearthnet数据集,包括卷积神经网络,多层感知,视觉变压器,高效导通和宽残余网络(WRN)架构。我们的目标是利用分类准确性,培训时间和推理率。我们提出了一种基于用于网络深度,宽度和输入数据分辨率的WRNS复合缩放的高效导通的框架,以有效地训练和测试不同的模型设置。我们设计一种新颖的缩放WRN架构,增强了有效的通道注意力机制。我们提出的轻量级模型具有较小的培训参数,实现所有19个LULC类的平均F分类准确度达到4.5%,并且验证了我们使用的resnet50最先进的模型速度快两倍作为基线。我们提供超过50种培训的型号,以及我们在多个GPU节点上分布式培训的代码。
translated by 谷歌翻译
Computational pathology can lead to saving human lives, but models are annotation hungry and pathology images are notoriously expensive to annotate. Self-supervised learning has shown to be an effective method for utilizing unlabeled data, and its application to pathology could greatly benefit its downstream tasks. Yet, there are no principled studies that compare SSL methods and discuss how to adapt them for pathology. To address this need, we execute the largest-scale study of SSL pre-training on pathology image data, to date. Our study is conducted using 4 representative SSL methods on diverse downstream tasks. We establish that large-scale domain-aligned pre-training in pathology consistently out-performs ImageNet pre-training in standard SSL settings such as linear and fine-tuning evaluations, as well as in low-label regimes. Moreover, we propose a set of domain-specific techniques that we experimentally show leads to a performance boost. Lastly, for the first time, we apply SSL to the challenging task of nuclei instance segmentation and show large and consistent performance improvements under diverse settings.
translated by 谷歌翻译
While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train. 1
translated by 谷歌翻译
本文研究了基于图像的蒙版自动编码器(MAE)的简单扩展,以从音频谱图中学习自我监督的表示。在MAE中的变压器编码器编码器设计之后,我们的Audio-MAE首先编码具有较高遮罩比的音频谱图斑块,仅通过编码器层馈入非掩盖令牌。然后,解码器重新订购并解码编码的上下文,并用掩码令牌填充,以重建输入频谱图。我们发现将局部窗户注意力纳入解码器是有益的,因为音频谱图在当地时间和频带中高度相关。然后,我们在目标数据集上以较低的掩模比微调编码器。从经验上讲,音频MAE在六个音频和语音分类任务上设定了新的最先进的性能,超过了使用外部监督预训练的其他最新模型。代码和模型将在https://github.com/facebookresearch/audiomae上。
translated by 谷歌翻译
对联合国可持续发展目标的进展(SDGS)因关键环境和社会经济指标缺乏数据而受到阻碍,其中历史上有稀疏时间和空间覆盖率的地面调查。机器学习的最新进展使得可以利用丰富,频繁更新和全球可用的数据,例如卫星或社交媒体,以向SDGS提供洞察力。尽管有希望的早期结果,但到目前为止使用此类SDG测量数据的方法在很大程度上在不同的数据集或使用不一致的评估指标上进行了评估,使得难以理解的性能是改善,并且额外研究将是最丰富的。此外,处理卫星和地面调查数据需要域知识,其中许多机器学习群落缺乏。在本文中,我们介绍了3个SDG的3个基准任务的集合,包括与经济发展,农业,健康,教育,水和卫生,气候行动和陆地生命相关的任务。 15个任务中的11个数据集首次公开发布。我们为Acceptandbench的目标是(1)降低机器学习界的进入的障碍,以促进衡量和实现SDGS; (2)提供标准基准,用于评估各种SDG的任务的机器学习模型; (3)鼓励开发新颖的机器学习方法,改进的模型性能促进了对SDG的进展。
translated by 谷歌翻译
我们提出了引导蒙面的自动编码器(bootmae),这是一种新的视觉BERT预训练方法。 Bootmae用两个核心设计改进了原始的蒙版自动编码器(MAE):1)动量编码器,该动量编码器可作为额外的BERT预测目标提供在线功能; 2)试图降低编码器的压力以记住目标特定信息的靶向解码器。第一个设计的动机是通过观察到的,即使用预定的MAE提取特征,因为掩盖令牌的BERT预测目标可以实现更好的预训练性能。因此,我们与原始的MAE编码器并行添加了一个动量编码器,该编码器通过将其自己的表示作为BERT预测目标来引导预处理性能。在第二个设计中,我们将特定于目标的信息(例如,未掩盖贴片的像素值)直接传达到解码器中,以减少记住目标特定信息的编码器的压力。因此,编码器专注于语义建模,这是BERT预训练的目的,并且不需要浪费其在记住与预测目标相关的未掩盖令牌的信息时的能力。通过广泛的实验,我们的Bootmae在ImageNet-1k上获得了$ 84.2 \%$ $ $ $+0.8 \%$在同一预训练时期。 Bootmae还获得了$+1.0 $ MIOU在ADE20K上的语义细分和$+1.3 $ box ap,$+1.4 $+1.4 $ bask ap改进对象检测和可可数据集上的细分。代码在https://github.com/lightdxy/bootmae上发布。
translated by 谷歌翻译
The combination of transformers and masked image modeling (MIM) pre-training framework has shown great potential in various vision tasks. However, the pre-training computational budget is too heavy and withholds the MIM from becoming a practical training paradigm. This paper presents FastMIM, a simple and generic framework for expediting masked image modeling with the following two steps: (i) pre-training vision backbones with low-resolution input images; and (ii) reconstructing Histograms of Oriented Gradients (HOG) feature instead of original RGB values of the input images. In addition, we propose FastMIM-P to progressively enlarge the input resolution during pre-training stage to further enhance the transfer results of models with high capacity. We point out that: (i) a wide range of input resolutions in pre-training phase can lead to similar performances in fine-tuning phase and downstream tasks such as detection and segmentation; (ii) the shallow layers of encoder are more important during pre-training and discarding last several layers can speed up the training stage with no harm to fine-tuning performance; (iii) the decoder should match the size of selected network; and (iv) HOG is more stable than RGB values when resolution transfers;. Equipped with FastMIM, all kinds of vision backbones can be pre-trained in an efficient way. For example, we can achieve 83.8%/84.1% top-1 accuracy on ImageNet-1K with ViT-B/Swin-B as backbones. Compared to previous relevant approaches, we can achieve comparable or better top-1 accuracy while accelerate the training procedure by $\sim$5$\times$. Code can be found in https://github.com/ggjy/FastMIM.pytorch.
translated by 谷歌翻译
我们对最近的自我和半监督ML技术进行严格的评估,从而利用未标记的数据来改善下游任务绩效,以河床分割的三个遥感任务,陆地覆盖映射和洪水映射。这些方法对于遥感任务特别有价值,因为易于访问未标记的图像,并获得地面真理标签通常可以昂贵。当未标记的图像(标记数据集之外)提供培训时,我们量化性能改进可以对这些遥感分割任务进行期望。我们还设计实验以测试这些技术的有效性,当测试集相对于训练和验证集具有域移位时。
translated by 谷歌翻译
Driven by improved architectures and better representation learning frameworks, the field of visual recognition has enjoyed rapid modernization and performance boost in the early 2020s. For example, modern ConvNets, represented by ConvNeXt, have demonstrated strong performance in various scenarios. While these models were originally designed for supervised learning with ImageNet labels, they can also potentially benefit from self-supervised learning techniques such as masked autoencoders (MAE). However, we found that simply combining these two approaches leads to subpar performance. In this paper, we propose a fully convolutional masked autoencoder framework and a new Global Response Normalization (GRN) layer that can be added to the ConvNeXt architecture to enhance inter-channel feature competition. This co-design of self-supervised learning techniques and architectural improvement results in a new model family called ConvNeXt V2, which significantly improves the performance of pure ConvNets on various recognition benchmarks, including ImageNet classification, COCO detection, and ADE20K segmentation. We also provide pre-trained ConvNeXt V2 models of various sizes, ranging from an efficient 3.7M-parameter Atto model with 76.7% top-1 accuracy on ImageNet, to a 650M Huge model that achieves a state-of-the-art 88.9% accuracy using only public training data.
translated by 谷歌翻译
蒙面的自动编码器是可扩展的视觉学习者,因为Mae \ Cite {He2022masked}的标题表明,视觉中的自我监督学习(SSL)可能会采用与NLP中类似的轨迹。具体而言,具有蒙版预测(例如BERT)的生成借口任务已成为NLP中的事实上的标准SSL实践。相比之下,他们的歧视性对应物(例如对比度学习)掩埋了视力中的生成方法的早期尝试;但是,蒙版图像建模的成功已恢复了屏蔽自动编码器(过去通常被称为DeNosing AutoCoder)。作为在NLP中与Bert弥合差距的一个里程碑,蒙面自动编码器吸引了对SSL在视觉及其他方面的前所未有的关注。这项工作对蒙面自动编码器进行了全面的调查,以洞悉SSL的有希望的方向。作为第一个使用蒙版自动编码器审查SSL的人,这项工作通过讨论其历史发展,最新进度以及对不同应用的影响,重点介绍其在视觉中的应用。
translated by 谷歌翻译